We consider the wave equation on an interval of length 1 with an interior damping at ξ and with Dirichlet boundary condition at the two ends. It is well known that, if ξ is rational, the energy does not decay to 0. In this case, we prove that the energy decays exponentially to a constant which we identify.
Nous considérons l'équation des ondes sur un intervalle de longueur 1 avec un amortissement en un point ξ intérieur et avec la condition au bord de Dirichlet aux deux extrémités. Il est bien-connu que, si ξ est rationnel, l'énergie ne tend pas vers 0. Dans ce cas, nous prouvons que l'énergie décroît exponentiellement vers une constante que l'on explicitera.
Accepted:
Published online:
Serge Nicaise 1; Julie Valein 2
@article{CRMATH_2010__348_1-2_47_0, author = {Serge Nicaise and Julie Valein}, title = {A remark on the stabilization of the 1-d wave equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {47--51}, publisher = {Elsevier}, volume = {348}, number = {1-2}, year = {2010}, doi = {10.1016/j.crma.2009.11.015}, language = {en}, }
Serge Nicaise; Julie Valein. A remark on the stabilization of the 1-d wave equation. Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 47-51. doi : 10.1016/j.crma.2009.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.015/
[1] Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string, Asymptot. Anal., Volume 28 (2001) no. 3–4, pp. 215-240
[2] K. Ammari, M. Jellouli, Méthode numérique pour la décroissance de l'énergie d'un réseau de cordes, Bull. Belg. Math. Soc. Simon Stevin, submitted for publication
[3] Stabilization of Bernoulli–Euler beams by means of a pointwise feedback force, SIAM J. Control Optim., Volume 39 (2000) no. 4, pp. 1160-1181
[4] Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM Control Optim. Calc. Var., Volume 6 (2001), pp. 361-386
[5] Some trigonometrical inequalities with applications to the theory of series, Math. Z., Volume 41 (1936) no. 1, pp. 367-379
[6] Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, Volume 2 (2007) no. 3, pp. 425-479 (electronic)
Cited by Sources:
Comments - Politique