Comptes Rendus
Partial Differential Equations
A remark on the stabilization of the 1-d wave equation
Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 47-51.

We consider the wave equation on an interval of length 1 with an interior damping at ξ and with Dirichlet boundary condition at the two ends. It is well known that, if ξ is rational, the energy does not decay to 0. In this case, we prove that the energy decays exponentially to a constant which we identify.

Nous considérons l'équation des ondes sur un intervalle de longueur 1 avec un amortissement en un point ξ intérieur et avec la condition au bord de Dirichlet aux deux extrémités. Il est bien-connu que, si ξ est rationnel, l'énergie ne tend pas vers 0. Dans ce cas, nous prouvons que l'énergie décroît exponentiellement vers une constante que l'on explicitera.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.11.015
Serge Nicaise 1; Julie Valein 2

1 Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, 59313 Valenciennes cedex 9, France
2 Institut Elie Cartan Nancy (IECN), Nancy-université & INRIA (Project-Team CORIDA), 54506 Vandoeuvre-lès-Nancy cedex, France
@article{CRMATH_2010__348_1-2_47_0,
     author = {Serge Nicaise and Julie Valein},
     title = {A remark on the stabilization of the 1-d wave equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {47--51},
     publisher = {Elsevier},
     volume = {348},
     number = {1-2},
     year = {2010},
     doi = {10.1016/j.crma.2009.11.015},
     language = {en},
}
TY  - JOUR
AU  - Serge Nicaise
AU  - Julie Valein
TI  - A remark on the stabilization of the 1-d wave equation
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 47
EP  - 51
VL  - 348
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2009.11.015
LA  - en
ID  - CRMATH_2010__348_1-2_47_0
ER  - 
%0 Journal Article
%A Serge Nicaise
%A Julie Valein
%T A remark on the stabilization of the 1-d wave equation
%J Comptes Rendus. Mathématique
%D 2010
%P 47-51
%V 348
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2009.11.015
%G en
%F CRMATH_2010__348_1-2_47_0
Serge Nicaise; Julie Valein. A remark on the stabilization of the 1-d wave equation. Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 47-51. doi : 10.1016/j.crma.2009.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.015/

[1] K. Ammari; A. Henrot; M. Tucsnak Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string, Asymptot. Anal., Volume 28 (2001) no. 3–4, pp. 215-240

[2] K. Ammari, M. Jellouli, Méthode numérique pour la décroissance de l'énergie d'un réseau de cordes, Bull. Belg. Math. Soc. Simon Stevin, submitted for publication

[3] K. Ammari; M. Tucsnak Stabilization of Bernoulli–Euler beams by means of a pointwise feedback force, SIAM J. Control Optim., Volume 39 (2000) no. 4, pp. 1160-1181

[4] K. Ammari; M. Tucsnak Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM Control Optim. Calc. Var., Volume 6 (2001), pp. 361-386

[5] A.E. Ingham Some trigonometrical inequalities with applications to the theory of series, Math. Z., Volume 41 (1936) no. 1, pp. 367-379

[6] S. Nicaise; J. Valein Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, Volume 2 (2007) no. 3, pp. 425-479 (electronic)

Cited by Sources:

Comments - Policy


Articles of potential interest

Stability results for the approximation of weakly coupled wave equations

Farah Abdallah; Serge Nicaise; Julie Valein; ...

C. R. Math (2012)