Comptes Rendus
Functional Analysis
A generalization of the Friedrichs angle and the method of alternating projections
Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 53-56.

We present a generalization to an arbitrary number of subspaces of the cosine of the Friedrichs angle between two subspaces of a Hilbert space. This parameter is used to analyze the rate of convergence in the von Neumann–Halperin method of alternating projections.

On considère une généralisation à plusieurs espaces du cosinus de l'angle de Friedrichs entre deux sous-espaces d'un espace de Hilbert. On utilise ce paramètre pour analyser la vitesse de convergence dans la méthode des projections alternées de von Neumann–Halperin.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.11.018
Catalin Badea 1; Sophie Grivaux 1; Vladimir Müller 2

1 Laboratoire Paul Painlevé, Université Lille 1, CNRS UMR 8524, 59655 Villeneuve d'Ascq, France
2 Institute of Mathematics AV CR, Zitna 25, 115 67 Prague 1, Czech Republic
@article{CRMATH_2010__348_1-2_53_0,
     author = {Catalin Badea and Sophie Grivaux and Vladimir M\"uller},
     title = {A generalization of the {Friedrichs} angle and the method of alternating projections},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {53--56},
     publisher = {Elsevier},
     volume = {348},
     number = {1-2},
     year = {2010},
     doi = {10.1016/j.crma.2009.11.018},
     language = {en},
}
TY  - JOUR
AU  - Catalin Badea
AU  - Sophie Grivaux
AU  - Vladimir Müller
TI  - A generalization of the Friedrichs angle and the method of alternating projections
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 53
EP  - 56
VL  - 348
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2009.11.018
LA  - en
ID  - CRMATH_2010__348_1-2_53_0
ER  - 
%0 Journal Article
%A Catalin Badea
%A Sophie Grivaux
%A Vladimir Müller
%T A generalization of the Friedrichs angle and the method of alternating projections
%J Comptes Rendus. Mathématique
%D 2010
%P 53-56
%V 348
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2009.11.018
%G en
%F CRMATH_2010__348_1-2_53_0
Catalin Badea; Sophie Grivaux; Vladimir Müller. A generalization of the Friedrichs angle and the method of alternating projections. Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 53-56. doi : 10.1016/j.crma.2009.11.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.018/

[1] N. Aronszajn Theory of reproducing kernels, Trans. Amer. Math. Soc., Volume 68 (1950), pp. 337-404

[2] C. Badea, S. Grivaux, V. Müller, The rate of convergence in the method of alternating projections, preprint

[3] H.H. Bauschke; F. Deutsch; H. Hundal Characterizing arbitrarily slow convergence in the method of alternating projections | arXiv

[4] F. Deutsch Best Approximation in Inner Product Spaces, CMS Books in Mathematics, vol. 7, Springer, New York, 2001

[5] F. Deutsch Rate of convergence of the method of alternating projections, Parametric Optimization and Approximation, Internat. Schriftenreihe Numer. Math., vol. 72, Birkhäuser, Basel, 1985, pp. 96-107

[6] F. Deutsch; H. Hundal The rate of convergence for the method of alternating projections. II, J. Math. Anal. Appl., Volume 205 (1997), pp. 381-405

[7] I. Halperin The product of projection operators, Acta Sci. Math. (Szeged), Volume 23 (1962), pp. 96-99

[8] S. Kayalar; H. Weinert Error bounds for the method of alternating projections, Math. Control Signals Systems, Volume 1 (1988), pp. 43-59

[9] N. Nikolski Treatise on the Shift Operator. Spectral Function Theory, Grundlehren der Mathematischen Wissenschaften, vol. 273, Springer-Verlag, Berlin, 1986 (Translated from the Russian by Jaak Peetre)

[10] J. Xu; L. Zikatanov The method of alternating projections and the method of subspace corrections in Hilbert space, J. Amer. Math. Soc., Volume 15 (2002), pp. 573-597

Cited by Sources:

Comments - Policy