[Loi du logarithme uniforme pour un estimateur non paramétrique de l'entropie de Shannon]
Dans cette Note, nous obtenons la consistance uniforme en terme de la fenêtre pour l'estimateur non paramétrique de l'entropie. Nos arguments de démonstration sont basés sur les résultats obtenus par Einmahl et Mason (2005) [10].
We establish uniform-in-bandwidth consistency for kernel-type estimators of the differential entropy. Our proofs rely on the methods of Einmahl and Mason (2005) [10].
Accepté le :
Publié le :
Salim Bouzebda 1 ; Issam Elhattab 1
@article{CRMATH_2010__348_5-6_317_0, author = {Salim Bouzebda and Issam Elhattab}, title = {Uniform in bandwidth consistency of the kernel-type estimator of the {Shannon's} entropy}, journal = {Comptes Rendus. Math\'ematique}, pages = {317--321}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2009.12.007}, language = {en}, }
TY - JOUR AU - Salim Bouzebda AU - Issam Elhattab TI - Uniform in bandwidth consistency of the kernel-type estimator of the Shannon's entropy JO - Comptes Rendus. Mathématique PY - 2010 SP - 317 EP - 321 VL - 348 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2009.12.007 LA - en ID - CRMATH_2010__348_5-6_317_0 ER -
Salim Bouzebda; Issam Elhattab. Uniform in bandwidth consistency of the kernel-type estimator of the Shannon's entropy. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 317-321. doi : 10.1016/j.crma.2009.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.12.007/
[1] An approximation to the density function, Ann. Inst. Statist. Math., Tokyo, Volume 6 (1954), pp. 127-132
[2] Nonparametric entropy estimation: An overview, Int. J. Math. Stat. Sci., Volume 6 (1997) no. 1, pp. 17-39
[3] Théorie de l'estimation fonctionnelle. Économie et Statistiques Avancèes, Economica, Paris, 1987
[4] Uniform limit laws for kernel density estimators on possibly unbounded intervals, Bordeaux, 2000 (Stat. Ind. Technol.), Birkhäuser Boston, Boston, MA (2000), pp. 477-492
[5] General asymptotic confidence bands based on kernel-type function estimators, Stat. Inference Stoch. Process., Volume 7 (2004) no. 3, pp. 225-277
[6] Nonparametric Density Estimation: The View, Wiley Series in Probability and Mathematical Statistics: Tracts on Probability and Statistics, John Wiley & Sons Inc., New York, 1985
[7] Combinatorial Methods in Density Estimation, Springer Series in Statistics, Springer-Verlag, New York, 2001
[8] Detection of abnormal behavior via nonparametric estimation of the support, SIAM J. Appl. Math., Volume 38 (1980) no. 3, pp. 480-488
[9] An empirical process approach to the uniform consistency of kernel-type function estimators, J. Theoret. Probab., Volume 13 (2000) no. 1, pp. 1-37
[10] Uniform in bandwidth consistency of kernel-type function estimators, Ann. Statist., Volume 33 (2005) no. 3, pp. 1380-1403
[11] Uniform in bandwidth estimation of integral functionals of the density function, Scand. J. Statist., Volume 35 (2008) no. 4, pp. 739-761
[12] On the nonparametric estimation of the entropy functional, Spetses, 1990 (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 335, Kluwer Acad. Publ., Dordrecht (1991), pp. 81-95
[13] On estimation of a probability density function and mode, Ann. Math. Statist., Volume 33 (1962), pp. 1065-1076
[14] Nonparametric functional estimation, Probability and Mathematical Statistics, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1983
[15] Remarks on some nonparametric estimates of a density function, Ann. Math. Statist., Volume 27 (1956), pp. 832-837
[16] A mathematical theory of communication, Bell System Tech. J., Volume 27 (1948), pp. 379-423 (623–656)
Cité par Sources :
Commentaires - Politique