En 1990, Hutchinson et Lai ont conjecturé que si un couple aléatoire est stochastiquement croissant en X et en Y, le rho de Spearman et le tau de Kendall sont tels que . Cette conjecture est réfutée.
In 1990, Hutchinson and Lai conjectured that if a random pair is stochastically increasing in X and Y, then Spearman's rho and Kendall's tau are such that . This conjecture is disproved.
Accepté le :
Publié le :
Patrick Munroe 1 ; Thomas Ransford 1 ; Christian Genest 1
@article{CRMATH_2010__348_5-6_305_0, author = {Patrick Munroe and Thomas Ransford and Christian Genest}, title = {Un contre-exemple \`a une conjecture de {Hutchinson} et {Lai}}, journal = {Comptes Rendus. Math\'ematique}, pages = {305--310}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2010.01.026}, language = {fr}, }
TY - JOUR AU - Patrick Munroe AU - Thomas Ransford AU - Christian Genest TI - Un contre-exemple à une conjecture de Hutchinson et Lai JO - Comptes Rendus. Mathématique PY - 2010 SP - 305 EP - 310 VL - 348 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2010.01.026 LA - fr ID - CRMATH_2010__348_5-6_305_0 ER -
Patrick Munroe; Thomas Ransford; Christian Genest. Un contre-exemple à une conjecture de Hutchinson et Lai. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 305-310. doi : 10.1016/j.crma.2010.01.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.026/
[1] Spearman's ρ is larger than Kendall's τ for positively dependent random variables, J. Nonparametr. Statist., Volume 2 (1993), pp. 183-194
[2] Rank correlation and population models, J. Roy. Statist. Soc. Ser. B, Volume 12 (1950), pp. 171-181
[3] Note on Durbin and Stuart's formula for , J. Roy. Statist. Soc. Ser. B, Volume 13 (1951), p. 310
[4] Inversions and rank correlation coefficients, J. Roy. Statist. Soc. Ser. B, Volume 13 (1951), pp. 303-309
[5] Analytical proofs of classical inequalities between Spearman's ρ and Kendall's τ, J. Statist. Plann. Inference, Volume 139 (2009), pp. 3795-3798
[6] Hutchinson–Lai's conjecture for bivariate extreme value copulas, Statist. Probab. Lett., Volume 61 (2003), pp. 191-198
[7] Continuous Bivariate Distributions, Emphasising Applications, Rumsby Scientific, Adelaide, 1990
[8] Some concepts of dependence, Ann. Math. Statist., Volume 37 (1966), pp. 1137-1153
[9] An Introduction to Copulas, Springer, New York, 1999
[10] On measures of concordance, Stochastica, Volume 8 (1984), pp. 201-218
Cité par Sources :
Commentaires - Politique