Comptes Rendus
Partial Differential Equations
A one-dimensional Keller–Segel equation with a drift issued from the boundary
[Équation unidimensionnelle de type Keller–Segel avec un flux au bord]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 629-634.

Nous étudions dans cette Note la dynamique d'un modèle unidimensionnel de type Keller–Segel posé sur une demi-droite. Dans le cas présent, la production du signal chimique est localisée sur le bord, au lieu d'être répartie à l'intérieur du domaine comme dans le cas classique. On démontre, sous des hypothèses convenables, la dichotomie suivante qui rappelle le système de Keller–Segel en dimension deux d'espace. Les solutions sont globales si la masse est sous-critique, elles explosent en temps fini si la masse dépasse la masse critique. Enfin, les solutions convergent vers un état d'équilibre lorsque la masse est égale à la valeur critique. Des méthodes d'entropie sont développées, dans le but d'obtenir des résultats de convergence quantitatifs. Cette Note est enrichie d'une brève introduction à un modèle plus réaliste (à nouveau unidimensionnel).

We investigate in this Note the dynamics of a one-dimensional Keller–Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller–Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This Note is completed with a brief introduction to a more realistic model (still one-dimensional).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.04.009
Vincent Calvez 1 ; Nicolas Meunier 2 ; Raphael Voituriez 3

1 Unité de mathématiques pures et appliquées, CNRS UMR 5669, École normale supérieure de Lyon, 46, allée d'Italie, 69364 Lyon cedex 07, France
2 MAP5, CNRS UMR 8145, université Paris Descartes, 45, rue des Saints-Pères, 75270 Paris cedex 06, France
3 Laboratoire de la matière condensée, CNRS UMR 7600, université Pierre et Marie Curie, 4, place Jussieu, 75255 Paris cedex 05, France
@article{CRMATH_2010__348_11-12_629_0,
     author = {Vincent Calvez and Nicolas Meunier and Raphael Voituriez},
     title = {A one-dimensional {Keller{\textendash}Segel} equation with a drift issued from the boundary},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {629--634},
     publisher = {Elsevier},
     volume = {348},
     number = {11-12},
     year = {2010},
     doi = {10.1016/j.crma.2010.04.009},
     language = {en},
}
TY  - JOUR
AU  - Vincent Calvez
AU  - Nicolas Meunier
AU  - Raphael Voituriez
TI  - A one-dimensional Keller–Segel equation with a drift issued from the boundary
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 629
EP  - 634
VL  - 348
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2010.04.009
LA  - en
ID  - CRMATH_2010__348_11-12_629_0
ER  - 
%0 Journal Article
%A Vincent Calvez
%A Nicolas Meunier
%A Raphael Voituriez
%T A one-dimensional Keller–Segel equation with a drift issued from the boundary
%J Comptes Rendus. Mathématique
%D 2010
%P 629-634
%V 348
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2010.04.009
%G en
%F CRMATH_2010__348_11-12_629_0
Vincent Calvez; Nicolas Meunier; Raphael Voituriez. A one-dimensional Keller–Segel equation with a drift issued from the boundary. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 629-634. doi : 10.1016/j.crma.2010.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.009/

[1] J.-P. Aubin Un théorème de compacité, C. R. Acad. Sci. Paris, Volume 256 (1963), pp. 5042-5044

[2] P. Biler Existence and nonexistence of solutions for a model of gravitational interaction of particle III, Colloq. Math., Volume 68 (1995), pp. 229-239

[3] P. Biler; W.A. Woyczyński Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., Volume 59 (1998), pp. 845-869

[4] A. Blanchet; J.A. Carrillo; Ph. Laurençot Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, Volume 35 (2009), pp. 133-168

[5] A. Blanchet; J.A. Carrillo; N. Masmoudi Infinite time aggregation for the critical Patlak–Keller–Segel model in R2, Comm. Pure Appl. Math., Volume 61 (2008), pp. 1449-1481

[6] A. Blanchet; J. Dolbeault; B. Perthame Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, Volume 44 (2006) 32 pp. (electronic)

[7] V. Calvez; J.A. Carrillo Volume effects in the Keller–Segel model: energy estimates preventing blow-up, J. Math. Pures Appl., Volume 86 (2006), pp. 155-175

[8] V. Calvez, L. Corrias, A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller–Segel model in high dimension, submitted for publication

[9] V. Calvez, R.J. Hawkins, N. Meunier, R. Voituriez, Analysis of a self-organisation model for spontaneous cell polarization, in preparation

[10] V. Calvez; B. Perthame; M. Sharifi Tabar Modified Keller–Segel system and critical mass for the log interaction kernel, Nonlinear Partial Differential Equations and Related Analysis, Contemp. Math., vol. 429, Amer. Math. Soc., Providence, RI, 2007

[11] T. Cieślak; P. Laurençot Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system, 2009 http://www.citebase.org/abstract?id=oai:arXiv.org:0810.3369 (preprint arXiv)

[12] L. Corrias; B. Perthame; H. Zaag Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milano J. of Math., Volume 72 (2004), pp. 1-29

[13] J. Dolbeault; B. Perthame Optimal critical mass in the two-dimensional Keller–Segel model in R2, C. R. Math. Acad. Sci. Paris, Volume 339 (2004), pp. 611-616

[14] J. Dolbeault; C. Schmeiser The two-dimensional Keller–Segel model after blow-up, Discrete Contin. Dyn. Syst., Volume 25 (2009), pp. 109-121

[15] R.J. Hawkins; O. Benichou; M. Piel; R. Voituriez Rebuilding cytoskeleton roads: Active-transport-induced polarization of cells, Phys. Rev. E, Volume 80 (2009), p. 040903

[16] M.A. Herrero; J.J.L. Velázquez Singularity formation in the one-dimensional supercooled Stefan problem, European J. Appl. Math., Volume 7 (1996) no. 2, pp. 119-150

[17] M.A. Herrero; J.J.L. Velázquez Chemotactic collapse for the Keller–Segel model, J. Math. Biol., Volume 35 (1996) no. 2, pp. 177-194

[18] D. Horstmann From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., Volume 105 (2003), pp. 103-165

[19] D. Horstmann; G. Wang Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., Volume 12 (2001), pp. 159-177

[20] W. Jäger; S. Luckhaus On explosions of solutions to a system of partial differential equations modeling chemotaxis, Trans. Amer. Math. Soc., Volume 329 (1992), pp. 819-824

[21] E.F. Keller; L.A. Segel Model for chemotaxis, J. Theor. Biol., Volume 30 (1971), pp. 225-234

[22] T. Nagai Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci., Volume 5 (1995), pp. 581-601

[23] B. Perthame Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007

[24] J.J.L. Velázquez Point dynamics in a singular limit of the Keller–Segel model. I. Motion of the concentration regions, SIAM J. Appl. Math., Volume 64 (2004), pp. 1198-1223

[25] J.J.L. Velázquez Point dynamics in a singular limit of the Keller–Segel model. II. Formation of the concentration regions, SIAM J. Appl. Math., Volume 64 (2004), pp. 1224-1248

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Optimal critical mass in the two dimensional Keller–Segel model in R2

Jean Dolbeault; Benoît Perthame

C. R. Math (2004)


Critical space for the parabolic-parabolic Keller–Segel model in Rd

Lucilla Corrias; Benoît Perthame

C. R. Math (2006)


A functional framework for the Keller–Segel system: Logarithmic Hardy–Littlewood–Sobolev and related spectral gap inequalities

Jean Dolbeault; Juan Campos

C. R. Math (2012)