[Un contre-exemple à la conjecture de Kameko]
Cette Note donne un contre-exemple à la conjecture de Kameko. Celle ci donnait une borne supérieure explicite pour le cardinal d'un système minimal de générateurs – comme module sur l'algèbre de Steenrod
This Note gives a counter-example to Kameko's conjecture, stating an explicit upper bound for the cardinal of a minimal system of generators – as module over the Steenrod's algebra
Accepté le :
Publié le :
Nguyễn Sum 1
@article{CRMATH_2010__348_11-12_669_0, author = {Nguyễn Sum}, title = {The negative answer to {Kameko's} conjecture on the hit problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {669--672}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.03.021}, language = {en}, }
Nguyễn Sum. The negative answer to Kameko's conjecture on the hit problem. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 669-672. doi : 10.1016/j.crma.2010.03.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.021/
[1] Modular representations on the homology of power of real projective space, Oaxtepec 1991 (M.C. Tangora, ed.) (Contemp. Math.), Volume vol. 146 (1993), pp. 49-70 (MR1224907)
[2] On behavior of the algebraic transfer, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 473-487 (MR2095619)
[3] The boundedness conjecture for the action of the Steenrod algebra on polynomials (N. Ray; G. Walker, eds.), Adams Memorial Symposium on Algebraic Topology 2, London Math. Soc. Lecture Notes Ser., vol. 176, 1990, pp. 203-216 (MR1232207)
[4] Representations of the homology of BV and the Steenrod algebra II, Algebraic topology: New trend in localization and periodicity, Progr. Math., Volume 136 (1996), pp. 143-154 (MR1397726)
[5] The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 4065-4089 (MR2159700)
[6] M. Kameko, Products of projective spaces as Steenrod modules, Ph.D. thesis, Johns Hopkins University, 1990
[7] M. Kameko, Generators of the cohomology of
[8] The iterated transfer analogue of the new doomsday conjecture, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 2325-2351 (MR1443884)
[9]
[10] Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 5, pp. 1785-1837 (MR2445834)
[11] Generators of
[12] On characterizing summands in the classifying space of a group, I, Amer. J. Math., Volume 112 (1990), pp. 737-748 (MR1073007)
[13] On the subalgebra of
[14] The transfer in homological algebra, Math. Z., Volume 202 (1989), pp. 493-523 (MR1022818)
[15] N. Sum, The hit problem for the polynomial algebra of four variables, submitted for publication, available upon request
[16] Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989), pp. 307-309 (MR0974986)
Cité par Sources :
Commentaires - Politique