This Note gives a counter-example to Kameko's conjecture, stating an explicit upper bound for the cardinal of a minimal system of generators – as module over the Steenrod's algebra – of the polynomial algebra in k generators (of degree 1) over the field . The conjecture is true for (Kameko (1990) [6]), (Kameko (2003) [7] and the author of this Note; Sum (preprint) [15]), but false for . In order to give the counter-example we restrict to some degrees and prove a recurrence relation for the cardinal of a minimal system of generators in these degrees. It results as an easy consequence that the conjecture is false for .
Cette Note donne un contre-exemple à la conjecture de Kameko. Celle ci donnait une borne supérieure explicite pour le cardinal d'un système minimal de générateurs – comme module sur l'algèbre de Steenrod – de l'algèbre polynomiale en k générateurs (de degré 1) sur le corps . La conjecture est vraie pour (Kameko, thèse Johns Hopkins University, 1990), récemment démontrée par Kameko, Nam et l'auteur de la Note pour , qui montre ici qu'elle est fausse pour . Pour donner ce contre-exemple l'auteur se restreint à certains degrés, et démontre une formule de récurrence pour le cardinal d'un système minimal de générateurs en ces degrés. C'est alors une conséquence facile de cette formule qui montre que la conjecture est fausse si .
Accepted:
Published online:
Nguyễn Sum 1
@article{CRMATH_2010__348_11-12_669_0, author = {Nguyễn Sum}, title = {The negative answer to {Kameko's} conjecture on the hit problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {669--672}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.03.021}, language = {en}, }
Nguyễn Sum. The negative answer to Kameko's conjecture on the hit problem. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 669-672. doi : 10.1016/j.crma.2010.03.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.021/
[1] Modular representations on the homology of power of real projective space, Oaxtepec 1991 (M.C. Tangora, ed.) (Contemp. Math.), Volume vol. 146 (1993), pp. 49-70 (MR1224907)
[2] On behavior of the algebraic transfer, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 473-487 (MR2095619)
[3] The boundedness conjecture for the action of the Steenrod algebra on polynomials (N. Ray; G. Walker, eds.), Adams Memorial Symposium on Algebraic Topology 2, London Math. Soc. Lecture Notes Ser., vol. 176, 1990, pp. 203-216 (MR1232207)
[4] Representations of the homology of BV and the Steenrod algebra II, Algebraic topology: New trend in localization and periodicity, Progr. Math., Volume 136 (1996), pp. 143-154 (MR1397726)
[5] The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 4065-4089 (MR2159700)
[6] M. Kameko, Products of projective spaces as Steenrod modules, Ph.D. thesis, Johns Hopkins University, 1990
[7] M. Kameko, Generators of the cohomology of , preprint, Toyama University, 2003
[8] The iterated transfer analogue of the new doomsday conjecture, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 2325-2351 (MR1443884)
[9] -générateurs génériques pour l'algèbre polynomiale, Adv. Math., Volume 186 (2004), pp. 334-362 (MR2073910)
[10] Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 5, pp. 1785-1837 (MR2445834)
[11] Generators of as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., Volume 833 (April 1987)
[12] On characterizing summands in the classifying space of a group, I, Amer. J. Math., Volume 112 (1990), pp. 737-748 (MR1073007)
[13] On the subalgebra of annihilated by Steenrod operations, J. Pure Appl. Algebra, Volume 127 (1998), pp. 273-288 (MR1617199)
[14] The transfer in homological algebra, Math. Z., Volume 202 (1989), pp. 493-523 (MR1022818)
[15] N. Sum, The hit problem for the polynomial algebra of four variables, submitted for publication, available upon request
[16] Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989), pp. 307-309 (MR0974986)
Cited by Sources:
Comments - Policy