This Note deals with the equivalence between the optimality of a transport plan for the Monge–Kantorovich problem and the condition of c-cyclical monotonicity, as an outcome of the construction in Bianchini and Caravenna (2009) [7]. We emphasize the measurability assumption on the hidden structure of linear preorder, applied also to extremality and uniqueness problems among the family of transport plans.
Dans la présente note nous décrivons brièvement la construction introduite dans Bianchini and Caravenna (2009) [7] à propos de l'équivalence entre l'optimalité d'un plan de transport pour le problème de Monge–Kantorovich et la condition de monotonie c-cyclique—ainsi que d'autres sujets que cela nous amène à aborder. Nous souhaitons mettre en évidence l'hypothèse de mesurabilité sur la structure sous-jacente de pré-ordre linéaire.
Accepted:
Published online:
Stefano Bianchini 1; Laura Caravenna 2
@article{CRMATH_2010__348_11-12_613_0, author = {Stefano Bianchini and Laura Caravenna}, title = {On optimality of \protect\emph{c}-cyclically monotone transference plans}, journal = {Comptes Rendus. Math\'ematique}, pages = {613--618}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.03.022}, language = {en}, }
Stefano Bianchini; Laura Caravenna. On optimality of c-cyclically monotone transference plans. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 613-618. doi : 10.1016/j.crma.2010.03.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.022/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford, 2000
[2] Existence and Stability Results in the Theory of Optimal Transportation, Optimal Transportation and Applications, Lecture Notes in Mathematics, vol. 1813, Springer, Berlin, 2001
[3] Optimal and better transport plans, J. Funct. Anal., Volume 256 (2009) no. 6, pp. 1907-1927
[4] M. Beiglböck, C. Leonard, W. Schachermayer, A general duality theorem for the Monge–Kantorovich transport problem
[5] M. Beiglböck, C. Leonard, W. Schachermayer, On the duality theory for the Monge–Kantorovich transport problem
[6] M. Beiglböck, W. Schachermayer, Duality for Borel measurable cost function, preprint
[7] On the extremality, uniqueness and optimality of transference plans, Bull. Inst. Math. Acad. Sin. (N.S.), Volume 4 (2009) no. 4, pp. 353-455
[8] Measure Theory, vol. 1–4, Torres Fremlin, Colchester, 2001
[9] Borel orderings, Trans. Amer. Math. Soc., Volume 310 (1988) no. 1, pp. 293-302
[10] Supports of doubly stochastic measures, Bernoulli, Volume 1 (1995) no. 3, pp. 217-243
[11] When a partial Borel order is linearizable, Fund. Math., Volume 155 (1998) no. 3, pp. 301-309
[12] Duality theorems for marginals problems, Z. Wahrsch. Verw. Gebiete, Volume 67 (1984) no. 4, pp. 399-432
[13] On the sufficiency of c-cyclical monotonicity for optimality of transport plans, Math. Z. (2007)
[14] W. Schachermayer, J. Teichmann, Solution of a problem in Villani's book, preprint, 2005
[15] Characterization of optimal transport plans for the Monge–Kantorovich problem, Proc. Amer. Math. Soc., Volume 137 (2009) no. 2, pp. 519-529
[16] On Hoeffding–Fréchet bounds and cyclic monotone relations, J. Multivariate Anal., Volume 40 (1992) no. 2, pp. 328-334
[17] Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, AMS, Providence, RI, 2003
Cited by Sources:
Comments - Policy