Comptes Rendus
Mathematical Analysis/Calculus of Variations
On optimality of c-cyclically monotone transference plans
Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 613-618.

This Note deals with the equivalence between the optimality of a transport plan for the Monge–Kantorovich problem and the condition of c-cyclical monotonicity, as an outcome of the construction in Bianchini and Caravenna (2009) [7]. We emphasize the measurability assumption on the hidden structure of linear preorder, applied also to extremality and uniqueness problems among the family of transport plans.

Dans la présente note nous décrivons brièvement la construction introduite dans Bianchini and Caravenna (2009) [7] à propos de l'équivalence entre l'optimalité d'un plan de transport pour le problème de Monge–Kantorovich et la condition de monotonie c-cyclique—ainsi que d'autres sujets que cela nous amène à aborder. Nous souhaitons mettre en évidence l'hypothèse de mesurabilité sur la structure sous-jacente de pré-ordre linéaire.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.03.022

Stefano Bianchini 1; Laura Caravenna 2

1 SISSA, via Beirut 2, 34014 Trieste, Italy
2 CRM De Giorgi, Collegio Puteano, Scuola Normale Superiore, Piazza dei Cavalieri 3, 56100 Pisa, Italy
@article{CRMATH_2010__348_11-12_613_0,
     author = {Stefano Bianchini and Laura Caravenna},
     title = {On optimality of \protect\emph{c}-cyclically monotone transference plans},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {613--618},
     publisher = {Elsevier},
     volume = {348},
     number = {11-12},
     year = {2010},
     doi = {10.1016/j.crma.2010.03.022},
     language = {en},
}
TY  - JOUR
AU  - Stefano Bianchini
AU  - Laura Caravenna
TI  - On optimality of c-cyclically monotone transference plans
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 613
EP  - 618
VL  - 348
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2010.03.022
LA  - en
ID  - CRMATH_2010__348_11-12_613_0
ER  - 
%0 Journal Article
%A Stefano Bianchini
%A Laura Caravenna
%T On optimality of c-cyclically monotone transference plans
%J Comptes Rendus. Mathématique
%D 2010
%P 613-618
%V 348
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2010.03.022
%G en
%F CRMATH_2010__348_11-12_613_0
Stefano Bianchini; Laura Caravenna. On optimality of c-cyclically monotone transference plans. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 613-618. doi : 10.1016/j.crma.2010.03.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.022/

[1] L. Ambrosio; N. Fusco; D. Pallara Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford, 2000

[2] L. Ambrosio; A. Pratelli Existence and Stability Results in the L1 Theory of Optimal Transportation, Optimal Transportation and Applications, Lecture Notes in Mathematics, vol. 1813, Springer, Berlin, 2001

[3] M. Beiglböck; M. Goldstern; G. Maresch; W. Schachermayer Optimal and better transport plans, J. Funct. Anal., Volume 256 (2009) no. 6, pp. 1907-1927

[4] M. Beiglböck, C. Leonard, W. Schachermayer, A general duality theorem for the Monge–Kantorovich transport problem

[5] M. Beiglböck, C. Leonard, W. Schachermayer, On the duality theory for the Monge–Kantorovich transport problem

[6] M. Beiglböck, W. Schachermayer, Duality for Borel measurable cost function, preprint

[7] S. Bianchini; L. Caravenna On the extremality, uniqueness and optimality of transference plans, Bull. Inst. Math. Acad. Sin. (N.S.), Volume 4 (2009) no. 4, pp. 353-455

[8] D.H. Fremlin Measure Theory, vol. 1–4, Torres Fremlin, Colchester, 2001

[9] L. Harrington; D. Marker; S. Shelah Borel orderings, Trans. Amer. Math. Soc., Volume 310 (1988) no. 1, pp. 293-302

[10] K. Hestir; S.C. Williams Supports of doubly stochastic measures, Bernoulli, Volume 1 (1995) no. 3, pp. 217-243

[11] V. Kanovei When a partial Borel order is linearizable, Fund. Math., Volume 155 (1998) no. 3, pp. 301-309

[12] H.G. Kellerer Duality theorems for marginals problems, Z. Wahrsch. Verw. Gebiete, Volume 67 (1984) no. 4, pp. 399-432

[13] A. Pratelli On the sufficiency of c-cyclical monotonicity for optimality of transport plans, Math. Z. (2007)

[14] W. Schachermayer, J. Teichmann, Solution of a problem in Villani's book, preprint, 2005

[15] W. Schachermayer; J. Teichmann Characterization of optimal transport plans for the Monge–Kantorovich problem, Proc. Amer. Math. Soc., Volume 137 (2009) no. 2, pp. 519-529

[16] C. Smith; M. Knott On Hoeffding–Fréchet bounds and cyclic monotone relations, J. Multivariate Anal., Volume 40 (1992) no. 2, pp. 328-334

[17] C. Villani Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, AMS, Providence, RI, 2003

Cited by Sources:

Comments - Policy