Continuous transitions between different periodic orbits in a one-dimensional inelastic particle system with two particles are investigated. We explain why continuous transitions that occur when adding or subtracting a single collision are, generically, of co-dimension 2. However, we show that there are an infinite set of degenerate transitions of co-dimension 1. We provide an analysis that gives a simple criteria to classify which transitions are degenerated purely from the discrete set of collisions that occur in the orbits.
Nous étudions les transitions continues entre différentes orbites périodiques dans un système unidimensionnel inélastique à deux particules. Nous expliquons pourquoi les transitions continues qui apparaissent lorsque l'on ajoute ou enlève une collision sont, en général, de codimension 2. Cependant, nous montrons qu'il existe un ensemble infini de transitions dégénérées de codimension 1. Nous fournissons une méthode qui, en se basant uniquement sur l'ensemble des collisions qui interviennent dans les orbites, donne un critère simple pour déterminer quelles transitions sont dégénérées.
Accepted:
Published online:
Rong Yang 1; Jonathan J. Wylie 2, 3
@article{CRMATH_2010__348_9-10_593_0, author = {Rong Yang and Jonathan J. Wylie}, title = {Continuous orbit transitions in a one-dimensional inelastic particle system}, journal = {Comptes Rendus. Math\'ematique}, pages = {593--595}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.04.016}, language = {en}, }
TY - JOUR AU - Rong Yang AU - Jonathan J. Wylie TI - Continuous orbit transitions in a one-dimensional inelastic particle system JO - Comptes Rendus. Mathématique PY - 2010 SP - 593 EP - 595 VL - 348 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2010.04.016 LA - en ID - CRMATH_2010__348_9-10_593_0 ER -
Rong Yang; Jonathan J. Wylie. Continuous orbit transitions in a one-dimensional inelastic particle system. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 593-595. doi : 10.1016/j.crma.2010.04.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.016/
[1] Breakdown of hydrodynamics in a one-dimensional system of inelastic particles, Phys. Rev. Lett., Volume 74 (1995), pp. 1268-1271
[2] Energy flux into a fluidized granular medium at a vibrating wall, Phys. Rev. E, Volume 55 (1997), pp. 7767-7770
[3] Inelastic collapse and clumping in a one-dimensional granular medium, Phys. Fluids A, Volume 4 (1992), pp. 496-504
[4] Periodic orbits of a one-dimensional inelastic particle system, C. R. Math., Volume 339 (2004), pp. 603-606
[5] Collapse of periodic orbits in a driven inelastic particle system, Phys. Rev. E, Volume 74 (2006), p. 011305
[6] Dynamics of a one-dimensional inelastic particle system, Phys. Rev. E, Volume 61 (2000), pp. 2920-2923
[7] R. Yang, J.J. Wylie, Degenerate orbit transitions in a one-dimensional inelastic particle system, submitted for publication
Cited by Sources:
Comments - Policy