[Équivalence topologique de champs de vecteurs après éclatement]
We give a theorem of characterization for the property of being topologically equivalent after blow-up in the set of germs of three-dimensional hyperbolic vector fields. Given ξ,
Nous donnons un théorème de caractérisation pour la propriété d'être topologiquement équivalents après éclatement dans l'ensemble des germes de champ de vecteurs hyperboliques en dimension trois. Etant donnés deux tels germes ξ,
Accepté le :
Publié le :
Clementa Alonso-González 1
@article{CRMATH_2010__348_11-12_673_0, author = {Clementa Alonso-Gonz\'alez}, title = {Topological equivalence of vector fields after blow-up}, journal = {Comptes Rendus. Math\'ematique}, pages = {673--676}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.019}, language = {en}, }
Clementa Alonso-González. Topological equivalence of vector fields after blow-up. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 673-676. doi : 10.1016/j.crma.2010.04.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.019/
[1] Topological classification for chains of saddle connections, J. Diff. Equations, Volume 208 (2005), pp. 275-291
[2] Topological equivalence for multiple saddle connections, Discrete Continuous Dyn. Syst., Volume 15 (2006), pp. 395-414
[3] Topological invariants for singularities of real vector fields in dimension three, Discrete Continuous Dyn. Syst., Volume 20 (2008), pp. 823-847
[4] Desingularization of absolutely isolated singularities of vector fields, Invent. Math., Volume 98 (1989), pp. 351-369
[5] H. Hironaka, Stratification and flatness, Nordic Summer School NAVF, Symp. in Mathematics, Oslo, August 5–25, 1976
[6] Oeuvres, vol. I., Paris, 1928
Cité par Sources :
Commentaires - Politique