Comptes Rendus
Probability Theory
Multidimensional BSDEs with super-linear growth coefficient: Application to degenerate systems of semilinear PDEs
Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 677-682.

We establish the existence and uniqueness as well as the stability of p-integrable solutions to multidimensional backward stochastic differential equations (BSDEs) with super-linear growth coefficient and a p-integrable terminal condition (p>1). The generator could neither be locally monotone in the variable y nor locally Lipschitz in the variable z. As application, we establish the existence and uniqueness of weak (Sobolev) solutions to the associated systems of semilinear parabolic PDEs. The uniform ellipticity of the diffusion matrix is not required. Our result covers, for instance, certain systems of PDEs with logarithmic nonlinearities which arise in physics.

Nous établissons l'existence, l'unicité et la stability des solutions fortes pour des équations différentielles stochastiques rétrogrades (EDSR) avec une condition terminale p-integrable (p>1) et un coefficient admettant des croissances surlinéaires en les deux variables y et z. De plus, ce dernier peut être ni locallement monotone en y ni localement Lipschitz en z. Nous montrons également l'existence et l'unicité des solutions faibles pour les systèmes d'EDP associés. L'uniforme ellipticité n'est pas requise pour la matrice de diffusion.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.03.006

K. Bahlali 1; E. Essaky 2; M. Hassani 2

1 IMATH, UFR Sciences, UTV, B.P. 132, 83957 La Garde cedex, France
2 Université Cadi Ayyad, Laboratoire de Statistique des Processus, Marrakech, Maroc
@article{CRMATH_2010__348_11-12_677_0,
     author = {K. Bahlali and E. Essaky and M. Hassani},
     title = {Multidimensional {BSDEs} with super-linear growth coefficient: {Application} to degenerate systems of semilinear {PDEs}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {677--682},
     publisher = {Elsevier},
     volume = {348},
     number = {11-12},
     year = {2010},
     doi = {10.1016/j.crma.2010.03.006},
     language = {en},
}
TY  - JOUR
AU  - K. Bahlali
AU  - E. Essaky
AU  - M. Hassani
TI  - Multidimensional BSDEs with super-linear growth coefficient: Application to degenerate systems of semilinear PDEs
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 677
EP  - 682
VL  - 348
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2010.03.006
LA  - en
ID  - CRMATH_2010__348_11-12_677_0
ER  - 
%0 Journal Article
%A K. Bahlali
%A E. Essaky
%A M. Hassani
%T Multidimensional BSDEs with super-linear growth coefficient: Application to degenerate systems of semilinear PDEs
%J Comptes Rendus. Mathématique
%D 2010
%P 677-682
%V 348
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2010.03.006
%G en
%F CRMATH_2010__348_11-12_677_0
K. Bahlali; E. Essaky; M. Hassani. Multidimensional BSDEs with super-linear growth coefficient: Application to degenerate systems of semilinear PDEs. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 677-682. doi : 10.1016/j.crma.2010.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.006/

[1] K. Bahlali Backward stochastic differential equations with locally Lipschitz coefficient, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001) no. 5, pp. 481-486

[2] K. Bahlali Existence and uniqueness of solutions for BSDEs with locally Lipschitz coefficient, Electron. Comm. Probab., Volume 7 (2002), pp. 169-179

[3] K. Bahlali; E.H. Essaky; M. Hassani; E. Pardoux Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002) no. 9, pp. 757-762

[4] V. Bally; A. Matoussi Weak solutions for SPDEs and backward doubly stochastic differential equations, J. Theoret. Probab., Volume 14 (2001) no. 1, pp. 125-164

[5] G. Barles; E. Lesigne SDE, BSDE and PDE: Backward Stochastic Differential Equations (N. El Karoui; L. Mazliak, eds.), Pitman Research Notes in Math. Series, vol. 364, Longman, 1997

[6] Ph. Briand; B. Delyon; Y. Hu; E. Pardoux; L. Stoica Lp solutions of backward stochastic differential equations, Stochastic Process. Appl., Volume 108 (2003) no. 1, pp. 109-129

[7] N. El Karoui; S. Peng; M.C. Quenez Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997), pp. 1-71

[8] O.A. Ladyzenskaja; V.A. Solonnikov; N.N. Ural'ceva Linear and Quasilinear Equations of Parabolic Type, Translation of Mathematical Monographs, AMS, Providence, RI, 1968

[9] E. Pardoux; S. Peng Adapted solution of a backward stochastic differential equation, Systems Control Lett., Volume 14 (1990), pp. 55-61

Cited by Sources:

Comments - Policy