[Trou spectral dans
On démontre que si
It is shown that if
Accepté le :
Publié le :
Jean Bourgain 1 ; Alexander Gamburd 2
@article{CRMATH_2010__348_11-12_609_0, author = {Jean Bourgain and Alexander Gamburd}, title = {Spectral gaps in $ \mathit{SU}(d)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {609--611}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.024}, language = {en}, }
Jean Bourgain; Alexander Gamburd. Spectral gaps in $ \mathit{SU}(d)$. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 609-611. doi : 10.1016/j.crma.2010.04.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.024/
[1] Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, 1985
[2] On the Erdos–Volkmann and Katz–Tao ring conjectures, Geom. Funct. Anal., Volume 13 (2003) no. 2, pp. 334-365
[3] J. Bourgain, The discretized ring and projection theorems, J. Anal., in press
[4] On the spectral gap for finitely generated subgroups of
[5] Expansion and random walks in
[6] On dense free subgroups of Lie groups, J. Algebra, Volume 261 (2003) no. 2, pp. 448-467
[7] Additive Combinatorics, Cambridge Stud. Adv. Math., vol. 105, 2006
- Factoring with qutrits: Shor's algorithm on ternary and metaplectic quantum architectures, Physical Review A, Volume 96 (2017) no. 1 | DOI:10.1103/physreva.96.012306
- Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 9, p. 4239 | DOI:10.3934/dcds.2013.33.4239
- On the Furstenberg measure and density of states for the Anderson-Bernoulli model at small disorder, Journal d'Analyse Mathématique, Volume 117 (2012) no. 1, p. 273 | DOI:10.1007/s11854-012-0022-6
Cité par 3 documents. Sources : Crossref
Commentaires - Politique