[Trou spectral dans
On démontre que si
It is shown that if
Accepté le :
Publié le :
Jean Bourgain 1 ; Alexander Gamburd 2
@article{CRMATH_2010__348_11-12_609_0, author = {Jean Bourgain and Alexander Gamburd}, title = {Spectral gaps in $ \mathit{SU}(d)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {609--611}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.024}, language = {en}, }
Jean Bourgain; Alexander Gamburd. Spectral gaps in $ \mathit{SU}(d)$. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 609-611. doi : 10.1016/j.crma.2010.04.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.024/
[1] Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, 1985
[2] On the Erdos–Volkmann and Katz–Tao ring conjectures, Geom. Funct. Anal., Volume 13 (2003) no. 2, pp. 334-365
[3] J. Bourgain, The discretized ring and projection theorems, J. Anal., in press
[4] On the spectral gap for finitely generated subgroups of
[5] Expansion and random walks in
[6] On dense free subgroups of Lie groups, J. Algebra, Volume 261 (2003) no. 2, pp. 448-467
[7] Additive Combinatorics, Cambridge Stud. Adv. Math., vol. 105, 2006
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier