Comptes Rendus
Ordinary Differential Equations
A Lyapunov function for the chemostat with variable yields
[Une fonction de Lyapunov pour le chemostat avec des rendements variables]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 747-751.

Dans cette Note on propose une nouvelle fonction de Lyapunov pour l'étude de la stabilité asymptotique globale dans un modèle mathématique de compétition entre esspèces dans le chemostat. Le modèle inclut des fonctions de croissance monotones ou non monotones, des taux de mortalité différents pour chaque espèce et des taux de rendement variables, fonctions de la concentration en substrat. On obtient, comme corollaires de notre résultat, trois théorèmes de stabilité globale qui ont été considérés dans la litérature.

In this Note, we give a global asymptotic stability result for the competition mathematical model between several species in a chemostat, by using a new Lyapunov function. The model includes both monotone and non-monotone response functions, distinct removal rates for the species and variable yields, depending on the concentration of substrate. We obtain, as corollaries of our result, three global stability theorems which were considered in the literature.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.06.008

Tewfik Sari 1, 2

1 EPI MERE INRIA-INRA, UMR MISTEA, 2, place Viala, 34060 Montpellier, France
2 Laboratoire de mathématiques, informatique et applications, université de Haute Alsace, 4, rue des frères Lumière, 68093 Mulhouse, France
@article{CRMATH_2010__348_13-14_747_0,
     author = {Tewfik Sari},
     title = {A {Lyapunov} function for the chemostat with variable yields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {747--751},
     publisher = {Elsevier},
     volume = {348},
     number = {13-14},
     year = {2010},
     doi = {10.1016/j.crma.2010.06.008},
     language = {en},
}
TY  - JOUR
AU  - Tewfik Sari
TI  - A Lyapunov function for the chemostat with variable yields
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 747
EP  - 751
VL  - 348
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2010.06.008
LA  - en
ID  - CRMATH_2010__348_13-14_747_0
ER  - 
%0 Journal Article
%A Tewfik Sari
%T A Lyapunov function for the chemostat with variable yields
%J Comptes Rendus. Mathématique
%D 2010
%P 747-751
%V 348
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2010.06.008
%G en
%F CRMATH_2010__348_13-14_747_0
Tewfik Sari. A Lyapunov function for the chemostat with variable yields. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 747-751. doi : 10.1016/j.crma.2010.06.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.008/

[1] J. Arino; S.S. Pilyugin; G.S.K. Wolkowicz Considerations on yield, nutrient uptake, cellular growth and competition in chemostat models, Canadian Applied Mathematics Quarterly, Volume 11 (2003) no. 2, pp. 107-142

[2] G.J. Butler; G.S.K. Wolkowicz A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM Journal on Applied Mathematics, Volume 45 (1985), pp. 138-151

[3] S.B. Hsu Limiting behavior for competing species, SIAM Journal on Applied Mathematics, Volume 34 (1978), pp. 760-763

[4] S.B. Hsu; S.P. Hubbell; P. Waltman A mathematical theory for single nutrient competition in continuous culture of micro-organisms, SIAM Journal on Applied Mathematics, Volume 32 (1977), pp. 366-383

[5] P. de Leenheer; B. Li; H.L. Smith Competition in the chemostat: Some remarks, Canadian Applied Mathematics Quarterly, Volume 11 (2003) no. 3, pp. 229-248

[6] B. Li Global asymptotic behavior of the chemostat: General response functions and differential removal rates, SIAM Journal on Applied Mathematics, Volume 59 (1998), pp. 411-422

[7] J. Monod La technique de culture continue. Théorie et applications, Ann. Inst. Pasteur, Volume 79 (1950), pp. 390-410

[8] S.S. Pilyugin; P. Waltman Multiple limit cycles in the chemostat with variable yields, Mathematical Biosciences, Volume 182 (2003), pp. 151-166

[9] T. Sari Global dynamics of the chemostat with variable yields, 2010 | HAL

[10] T. Sari; F. Mazenc Global dynamics of the chemostat with different removal rates and variable yields, 2009 | HAL

[11] H.L. Smith; P. Waltman The Theory of the Chemostat, Dynamics of Microbial Competition, Cambridge University Press, 1995

[12] G.S.K. Wolkowicz; Z. Lu Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates, SIAM Journal on Applied Mathematics, Volume 52 (1992), pp. 222-233

[13] G.S.K. Wolkowicz; H. Xia Global asymptotic behavior of a chemostat model with discrete delays, SIAM Journal on Applied Mathematics, Volume 57 (1997), pp. 1019-1043

  • Térence Bayen; Henri Cazenave-Lacroutz; Jérôme Coville Stability of the chemostat system including a linear coupling between species, Discrete and Continuous Dynamical Systems. Series B, Volume 28 (2023) no. 3, pp. 2104-2129 | DOI:10.3934/dcdsb.2022160 | Zbl:1508.34048
  • Wen Liu; Yanling Li Positive solution and stability of the unstirred chemostat with variable yield, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 14, pp. 11754-11762 | DOI:10.1002/mma.7376 | Zbl:1473.35337
  • R. Fekih-Salem; Alain Rapaport; T. Sari Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses, Applied Mathematical Modelling, Volume 40 (2016) no. 17-18, pp. 7656-7677 | DOI:10.1016/j.apm.2016.03.028 | Zbl:1471.92223
  • Nahla Abdellatif; Radhouane Fekih-Salem; Tewfik Sari Competition for a single resource and coexistence of several species in the chemostat, Mathematical Biosciences and Engineering, Volume 13 (2016) no. 4, pp. 631-652 | DOI:10.3934/mbe.2016012 | Zbl:1352.92115
  • Rubayyi T. Alqahtani; Mark I. Nelson; Annette L. Worthy Analysis of a Chemostat Model with Variable Yield Coefficient and Substrate Inhibition: Contois Growth Kinetics, Chemical Engineering Communications, Volume 202 (2015) no. 3, p. 332 | DOI:10.1080/00986445.2013.836630
  • Tewfik Sari Competitive exclusion for chemostat equations with variable yields, Acta Applicandae Mathematicae, Volume 123 (2013) no. 1, pp. 201-219 | DOI:10.1007/s10440-012-9761-8 | Zbl:1402.92433
  • M. I. Nelson; T. Nicholls; N. Hamzah A biological process subject to noncompetitive substrate inhibition in a generalized flow reactor, The ANZIAM Journal, Volume 54 (2013) no. 4, pp. 273-290 | DOI:10.1017/s1446181113000126 | Zbl:1275.92027
  • Radhouane Fekih Salem; Tewfik Sari; Nahla Abdellatif On a model of competition and coexistence in the chemostat, ARIMA. Revue Africaine de la Recherche en Informatique et Mathématiques Appliqués, Volume 14 (2011), pp. 15-30 | DOI:10.46298/arima.1953 | Zbl:8019134
  • Global dynamics of the chemostat with different removal rates and variable yields, Mathematical Biosciences and Engineering, Volume 8 (2011) no. 3, p. 827 | DOI:10.3934/mbe.2011.8.827

Cité par 9 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: