[Le problème de la stabilité des trous noirs]
This is a short survey on the black hole stability problem written in honor of Yvonne Choquet Bruhat’s 100th birthday, subject very dear to her and to which she has contributed greatly, in particular her foundational local existence result [1] and the maximal globally hyperbolic development of a given initial data set. The main focus is on the recent results on the stability of slowly rotating Kerr contained in the sequence of works [2, 3, 4, 5, 6].
Ce texte donne un panorama succinct du problème de la stabilité des trous noirs, rédigé en l’honneur d’ Yvonne Choquet Bruhat, un sujet qui lui est cher et auquel elle a grandement contribué, notamment grâce à son résultat fondamental d’existence locale [1] et au développement maximal globalement hyperbolique d’un ensemble de données initiales. L’accent est mis principalement sur les résultats récents concernant la stabilité du Kerr en faible rotation, tels qu’exposés dans la série de travaux [2, 3, 4, 5, 6].
Révisé le :
Accepté le :
Publié le :
Mots-clés : Trous noirs, Stabilité, Sphères GCM, Repères nuls, Structures horizontales non intégrables
Sergiu Klainerman 1

@article{CRMECA_2025__353_G1_555_0, author = {Sergiu Klainerman}, title = {The black hole stability problem}, journal = {Comptes Rendus. M\'ecanique}, pages = {555--581}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.290}, language = {en}, }
Sergiu Klainerman. The black hole stability problem. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 555-581. doi : 10.5802/crmeca.290. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.290/
[1] Théorème d’existence pour certains systémes d’equations aux dérivées partielles non-linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI | Zbl
[2] Kerr stability for small angular momentum, Pure Appl. Math. Quat. (PAMQ), Volume 19 (2023) no. 3, pp. 791-1678 | DOI | Zbl
[3] Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes, Pure Appl. Math. Quat. (PAMQ), Volume 20 (2024) no. 7, pp. 2865-3849 | DOI | Zbl
[4] Construction of GCM spheres in perturbations of Kerr, Ann. PDE, Volume 8 (2022), 17 | DOI
[5] Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr, Ann. PDE (2022) no. 8, 18 | DOI | Zbl
[6] Construction of GCM hypersurfaces in perturbations of Kerr, Ann. PDE, Volume 9 (2023), 11 | DOI | Zbl
[7] Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett., Volume 11 (1963), pp. 237-238 | DOI | Zbl
[8] Note on the Kerr spinning-particle metric, J. Math. Phys., Volume 6 (1965) no. 6, pp. 915-917 | DOI | Zbl
[9] Rigidity results in general relativity: a review, Surv. Differ. Geometry, Volume 20 (2015), pp. 123-156 | DOI | Zbl
[10] The Formation of Black Holes in General Relativity, EMS Monographs in Mathematics, European Mathematical Society, Zürich, 2009 | DOI
[11] On the break-down criterion in general relativity, J. Am. Math. Soc., Volume 23 (2010), pp. 345-382 | DOI
[12] Anisotropic dynamical horizons arising in gravitational collapse (51 pp) | arXiv
[13] Naked singularity censoring with anisotropic apparent horizon, Ann. Math. (in press)
[14] On the global initial value problem and the issue of singularities, Class. Quantum Grav., Volume 16 (1999), p. A23-A35 | DOI | Zbl
[15] Global structure of the Kerr family of gravitational fields, Phys. Rev., Volume 174 (1968), pp. 1559-1571 | DOI | Zbl
[16] An introduction to the theory of the Kerr metric and its perturbations, General Relativity, an Einstein Centenary Survey (S. W. Hawking; W. Israel, eds.), Cambridge University Press, Cambridge, 1979
[17] Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space, Duke Math. J., Volume 165 (2016), pp. 723-791 | DOI | Zbl
[18] Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 219-254 | DOI | Zbl
[19] On universality of blow-up profile for L
[20] The Global Nonlinear Stability of the Minkowski Space, Princeton University Press, Princeton, NJ, 1993
[21] Asymptotic properties of linear field theories in Minkowski space, Commun. Pure Appl. Math., Volume 43 (1990), pp. 137-199 | DOI | Zbl
[22] Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations, Astrophys. J., Volume 185 (1973), pp. 635-648 | DOI
[23] Linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math., Volume 222 (2019), pp. 1-214 | DOI | Zbl
[24] Linear stability of Schwarzschild spacetime: decay of metric coefficients, J. Differ. Geom., Volume 116 (2020), pp. 481-541 | Zbl
[25] The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge, Ann. PDE, Volume 5 (2019) no. 2, 13 | DOI | Zbl
[26] Mode stability of the Kerr black hole, J. Math. Phys., Volume 30 (1989), pp. 1301-1305 | DOI | Zbl
[27] Decay of solutions of the exterior initial boundary value problem for the wave equation, Commun. Pure Appl. Math., Volume 14 (1961), pp. 561-568 | DOI | Zbl
[28] Decay of solutions of the wave equation outside non-trapping obstacles, Commun. Pure Appl. Math., Volume 30 (1977), pp. 447-508 | DOI | Zbl
[29] Uniform decay estimates and the Lorentz invariance of the classical wave equations, Commun. Pure Appl. Math., Volume 38 (1985), pp. 321-332 | DOI | Zbl
[30] Remarks on the global Sobolev inequalities, Commun. Pure Appl. Math., Volume 40 (1987), pp. 111-117 | DOI | Zbl
[31] Long time behavior of solutions to nonlinear wave equations, Proceedings of the International Congress of Mathematicians (Warsaw, 1983), Volume 1, 2, PWN, Warsaw (1984), pp. 1209-1215 | DOI | Zbl
[32] Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math., Volume 39 (1986), pp. 267-282 | DOI | Zbl
[33] The Null Condition and global existence to nonlinear wave equations, Lect. Appl. Math., Volume 23 (1986), pp. 293-326 | Zbl
[34] The Evolution Problem in General Relativity, Progress in Mathematical Physics, 25, Birkhauser, Boston, 2003, +385 pages | DOI
[35] Peeling properties of asymptotic solutions to the Einstein vacuum equations, Class. Quantum Grav., Volume 20 (2003), pp. 3215-3257 | DOI
[36] Global existence in the Einstein Vacuum equations in wave co-ordinates, Commun. Math. Phys., Volume 256 (2005), pp. 43-110 | DOI | Zbl
[37] An extension of the stability theorem of the Minkowski space in general relativity, Ph. D. Thesis, ETH (2007)
[38] On the asymptotic behavior of solutions to Einstein’s vacuum equations in wave coordinates, Commun. Math. Phys., Volume 353 (2017), pp. 135-184 | DOI | Zbl
[39] Stability of Minkowski spacetime with a translation space-like Killing field, Ann. PDE, Volume 4 (2018), 12 | DOI
[40] Stability of Minkowski space and polyhomogeneity of the metric, Ann. PDE, Volume 6 (2020), 2 | DOI | Zbl
[41] Global nonlinear stability of Minkowski space for spacelike-characteristic initial data | arXiv
[42] Global stability of Minkowski space with minimal decay | arXiv
[43] Extensions of the stability theorem of the Minkowski space in general relativity, AMS/IP Studies in Advanced Mathematics, American Mathematical Society, Providence, RI, 2009, xxiv+491 pages
[44] The stability of the Minkowski space for the Einstein–Vlasov system, Anal. PDE, Volume 14 (2021), pp. 425-531 | DOI | Zbl
[45] Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge, Arch. Rational Mech. Anal., Volume 235 (2020), pp. 517-633 | DOI | Zbl
[46] Asymptotic stability of Minkowski spacetime with non-compactly massless Vlasov matter, Arch. Rational Mech. Anal., Volume 242 (2021), pp. 1-147 | DOI | Zbl
[47] The global nonlinear stability of Minkowski space for self-gravitating massive fields, Commun. Math. Phys., Volume 346 (2016), pp. 603-665 | DOI | Zbl
[48] The Einstein–Klein–Gordon Coupled System: Global Stability of the Minkowski Solution, Annals of Math Studies, 213, Princeton University Press, Princeton NJ, 2022, xi+297 pages
[49] Stability of a Schwarzschild singularity, Phys. Rev., Volume 108 (1957) no. 2, pp. 1063-1069 | DOI | Zbl
[50] Stability of the Schwarzschild metric, Phys. Rev. D, Volume 1 (1970), pp. 2870-2879 | DOI
[51] Effective potential for even-parity Regge–Wheeler gravitational perturbation equations, Phys. Rev. Lett., Volume 24 (1970), pp. 737-738 | DOI
[52] Gravitational perturbations of spherically symmetric systems. I. The exterior problem, Ann. Phys., Volume 88 (1975), pp. 323-342 | DOI
[53] Radiation fields in the Schwarzschild background, J. Math. Phys., Volume 14 (1973), pp. 7-19 | DOI
[54] Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric, Astrophys. J., Volume 185 (1973), pp. 649-673 | DOI
[55] On the equations governing the perturbations of the Schwarzschild black hole, Proc. R. Soc. Lond. A Math., Volume 343 (1975), pp. 289-298 | DOI
[56] Construction of solutions of gravitational, electromagnetic, or other perturbation equations from solutions of decoupled equations, Phys. Rev. Lett., Volume 41 (1978), pp. 203-206 | DOI
[57] Gauge-invariant perturbations of Schwarzschild spacetime | arXiv
[58] Decay of solutions of the wave equation in the Kerr geometry, Commun. Math. Phys., Volume 264 (2006), pp. 465-503 | DOI | Zbl
[59] Quantitative mode stability for the wave equation on the Kerr spacetime, Ann. Henri Poincaré, Volume 16 (2015), pp. 289-345 | DOI | Zbl
[60] Decay for solutions of the wave equation on Kerr exterior spacetimes iii: The full subextremal case |a|
[61] Mode stability on the real axis, J. Math. Phys., Volume 58 (2017), 072501 | DOI | Zbl
[62] Linear stability of the non-extreme Kerr black hole, Adv. Theor. Math. Phys., Volume 21 (2017), pp. 1991-2085 | DOI | Zbl
[63] Mode stability for the Teukolsky equation on extremal and subextremal Kerr spacetimes, Commun. Math. Phys., Volume 378 (2020), pp. 705-781 | DOI | Zbl
[64] Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere, Class. Quantum Grav., Volume 4 (1987), pp. 893-898 | DOI | Zbl
[65] Semilinear wave equations on the Schwarzschild manifold. I. Local decay estimates, Adv. Differ. Equ., Volume 8 (2003), pp. 595-614 | Zbl
[66] The red-shift effect and radiation decay on black hole spacetimes, Commun. Pure Appl. Math., Volume 62 (2009), pp. 859-919 | DOI
[67] A new physical-space approach to decay for the wave equation with applications to black hole spacetimes, XVIth International Congress on Mathematical Physics, World Scientific Publishing, Hackensack, NJ (2010), pp. 421-432 | DOI | Zbl
[68] A vector field approach to almost-sharp decay for the wave equation on spherically symmetric, stationary spacetimes, Ann. PDE, Volume 4 (2018), 15 | DOI | Zbl
[69] Errata for “Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds” , “Semilinear wave equations on the Schwarzschild manifold I: Local Decay Estimates”, and “The wave equation on the Schwarzschild metric II: Local Decay for the spin 2 Regge Wheeler equation” (6 pages) | arXiv
[70] Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space, Commun. Math. Phys., Volume 268 (2006), pp. 481-504 | DOI | Zbl
[71] Strichartz estimates on Schwarzschild black hole backgrounds, Commun. Math. Phys., Volume 293 (2010), pp. 37-83 | DOI | Zbl
[72] On the global stability of the wave-map equation in Kerr spaces with small angular momentum, Ann. PDE, Volume 1 (2015), 1 | DOI | Zbl
[73] Nonlinear wave dynamics in black hole spacetimes, Ph. D. Thesis, Princeton University, Princeton, NJ (2017)
[74] Energy multipliers for perturbations of the Schwarzschild metric, Commun. Math. Phys., Volume 288 (2009), pp. 199-224 | DOI | Zbl
[75] A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, Invent. Math., Volume 185 (2011), pp. 467-559 | DOI | Zbl
[76] A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not., Volume 2 (2011), pp. 248-292 | DOI | Zbl
[77] Hidden symmetries and decay for the wave equation on the Kerr spacetime, Ann. Math., Volume 182 (2015) no. 2, pp. 787-853 | DOI | Zbl
[78] The linear stability of Reissner–Nordström spacetime for small charge, Ann. PDE, Volume 6 (2020), 8 | DOI | Zbl
[79] The linear stability of Reissner–Nordström spacetime: the full subextremal range |Q|
[80] Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations, Annals of Math Studies, 210, Princeton University Press, Princeton NJ, 2020, xviii+856 pages | DOI
[81] Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity, Commun. Math. Phys., Volume 377 (2020), pp. 2489-2551 | DOI | Zbl
[82] Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case |a|
[83] Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range |a|
[84] Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range |a|
[85] Linear stability of slowly rotating Kerr black holes, Invent. Math., Volume 223 (2021), pp. 1227-1406 | DOI | Zbl
[86] Optimal decay for solutions of the Teukolsky equation on the Kerr metric for the full subextremal range |a|
[87] Stability for linearized gravity on the Kerr spacetime | arXiv
[88] A space-time calculus based on pairs of null directions, J. Math. Phys., Volume 14 (1973), pp. 874-881 | DOI | Zbl
[89] The global non-linear stability of the Kerr-de Sitter family of black holes, Acta Math., Volume 220 (2018), pp. 1-206 | DOI | Zbl
[90] A master equation for gravitational pertur bations of maximally symmetric black holes in higher dimensions, Progr. Theor. Phys., Volume 110 (2003), pp. 701-722 | DOI | Zbl
[91] Decay of the Weyl curvature in expanding black hole cosmologies, Ann. PDE, Volume 8 (2022), 9 | DOI | Zbl
[92] Linear stability of the slowly-rotating Kerr-de Sitter family | arXiv
[93] Nonlinear stability of the slowly-rotating Kerr-de Sitter family | arXiv
[94] The non-linear stability of the Schwarzschild family of black holes | arXiv
[95] Regularity of the future event horizon in perturbations of Kerr (2024) ([gr-qc] 9 Sep) | arXiv
[96] Kerr stability in external regions, Ann. PDE, Volume 10 (2024), 9 | DOI | Zbl
[97] Angular momentum in general relativity: a new definition, Phys. Rev. Lett., Volume 81 (1998) no. 6, pp. 1150-1153 | DOI | Zbl
[98] Quasilocal angular momentum and center of mass in general relativity, Adv. Theor. Math. Phys., Volume 20 (2016), pp. 671-682 | DOI | Zbl
[99] Supertranslation invariance of angular momentum, Adv. Theor. Math. Phys., Volume 25 (2021), pp. 777-789 | DOI | Zbl
[100] Quasi-local energy-momentum and angular momentum in general relativity, Living Rev. Relativ., Volume 12 (2009), 4 | DOI | Zbl
[101] A fully anisotropic mechanism for formation of trapped surfaces in vacuum, Inventiones, Volume 198 (2014), pp. 1-26 | DOI | Zbl
[102] The Mathematical Theory of Black Holes, International Series of Monographs on Physics, Oxford University Press, Oxford, 1983
[103] Electromagnetic-gravitational perturbations of Kerr–Newman spacetime: the Teukolsky and Regge–Wheeler equations, J. Hyperbolic Differ. Eqts., Volume 19 (2022), pp. 1-139 | DOI | Zbl
[104] The Carter tensor and the physical-space analysis in perturbations of Kerr–Newman spacetime, J. Differ. Geom., Volume 127 (2024), pp. 277-371 | DOI | Zbl
[105] Boundedness and Decay for the Teukolsky System in Kerr–Newman Spacetime I: The Case |a|,|Q|
[106] Boundedness and Decay for the Teukolsky System in Kerr–Newman Spacetime II: The Case |a|
[107] The linear stability of weakly charged and slowly rotating Kerr–Newman family of charged black holes (2023) (1–180) | arXiv
Cité par Sources :
Commentaires - Politique