Comptes Rendus
Article de synthèse
The black hole stability problem
[Le problème de la stabilité des trous noirs]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 555-581.

This is a short survey on the black hole stability problem written in honor of Yvonne Choquet Bruhat’s 100th birthday, subject very dear to her and to which she has contributed greatly, in particular her foundational local existence result [1] and the maximal globally hyperbolic development of a given initial data set. The main focus is on the recent results on the stability of slowly rotating Kerr contained in the sequence of works [2, 3, 4, 5, 6].

Ce texte donne un panorama succinct du problème de la stabilité des trous noirs, rédigé en l’honneur d’ Yvonne Choquet Bruhat, un sujet qui lui est cher et auquel elle a grandement contribué, notamment grâce à son résultat fondamental d’existence locale [1] et au développement maximal globalement hyperbolique d’un ensemble de données initiales. L’accent est mis principalement sur les résultats récents concernant la stabilité du Kerr en faible rotation, tels qu’exposés dans la série de travaux [2, 3, 4, 5, 6].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.290
Keywords: Black holes, Stability, GCM spheres, Null frames, Non-integrable horizontal structures
Mots-clés : Trous noirs, Stabilité, Sphères GCM, Repères nuls, Structures horizontales non intégrables

Sergiu Klainerman 1

1 Mathematics Department, Princeton University, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_555_0,
     author = {Sergiu Klainerman},
     title = {The black hole stability problem},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {555--581},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.290},
     language = {en},
}
TY  - JOUR
AU  - Sergiu Klainerman
TI  - The black hole stability problem
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 555
EP  - 581
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.290
LA  - en
ID  - CRMECA_2025__353_G1_555_0
ER  - 
%0 Journal Article
%A Sergiu Klainerman
%T The black hole stability problem
%J Comptes Rendus. Mécanique
%D 2025
%P 555-581
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.290
%G en
%F CRMECA_2025__353_G1_555_0
Sergiu Klainerman. The black hole stability problem. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 555-581. doi : 10.5802/crmeca.290. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.290/

[1] Y. Fourès-Bruhat Théorème d’existence pour certains systémes d’equations aux dérivées partielles non-linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI | Zbl

[2] S. Klainerman; J. Szeftel Kerr stability for small angular momentum, Pure Appl. Math. Quat. (PAMQ), Volume 19 (2023) no. 3, pp. 791-1678 | DOI | Zbl

[3] E. Giorgi; S. Klainerman; J. Szeftel Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes, Pure Appl. Math. Quat. (PAMQ), Volume 20 (2024) no. 7, pp. 2865-3849 | DOI | Zbl

[4] S. Klainerman; J. Szeftel Construction of GCM spheres in perturbations of Kerr, Ann. PDE, Volume 8 (2022), 17 | DOI

[5] S. Klainerman; J. Szeftel Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr, Ann. PDE (2022) no. 8, 18 | DOI | Zbl

[6] D. Shen Construction of GCM hypersurfaces in perturbations of Kerr, Ann. PDE, Volume 9 (2023), 11 | DOI | Zbl

[7] R. P. Kerr Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett., Volume 11 (1963), pp. 237-238 | DOI | Zbl

[8] E. Newman; A. Janis Note on the Kerr spinning-particle metric, J. Math. Phys., Volume 6 (1965) no. 6, pp. 915-917 | DOI | Zbl

[9] A. Ionescu; S. Klainerman Rigidity results in general relativity: a review, Surv. Differ. Geometry, Volume 20 (2015), pp. 123-156 | DOI | Zbl

[10] D. Christodoulou The Formation of Black Holes in General Relativity, EMS Monographs in Mathematics, European Mathematical Society, Zürich, 2009 | DOI

[11] S. Klainerman; I. Rodnianski On the break-down criterion in general relativity, J. Am. Math. Soc., Volume 23 (2010), pp. 345-382 | DOI

[12] X. An; Q. Han Anisotropic dynamical horizons arising in gravitational collapse (51 pp) | arXiv

[13] X. An Naked singularity censoring with anisotropic apparent horizon, Ann. Math. (in press)

[14] D. Christodoulou On the global initial value problem and the issue of singularities, Class. Quantum Grav., Volume 16 (1999), p. A23-A35 | DOI | Zbl

[15] B. Carter Global structure of the Kerr family of gravitational fields, Phys. Rev., Volume 174 (1968), pp. 1559-1571 | DOI | Zbl

[16] S. Chandrasekhar An introduction to the theory of the Kerr metric and its perturbations, General Relativity, an Einstein Centenary Survey (S. W. Hawking; W. Israel, eds.), Cambridge University Press, Cambridge, 1979

[17] R. Donninger; J. Krieger; J. Szeftel; W. Wong Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space, Duke Math. J., Volume 165 (2016), pp. 723-791 | DOI | Zbl

[18] Y. Martel; F. Merle Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 219-254 | DOI | Zbl

[19] F. Merle; P. Raphaël On universality of blow-up profile for L2 critical nonlinear Schrödinger equation, Invent. Math., Volume 156 (2004), pp. 565-672 | DOI | Zbl

[20] D. Christodoulou; S. Klainerman The Global Nonlinear Stability of the Minkowski Space, Princeton University Press, Princeton, NJ, 1993

[21] D. Christodoulou; S. Klainerman Asymptotic properties of linear field theories in Minkowski space, Commun. Pure Appl. Math., Volume 43 (1990), pp. 137-199 | DOI | Zbl

[22] S. A. Teukolsky Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations, Astrophys. J., Volume 185 (1973), pp. 635-648 | DOI

[23] M. Dafermos; G. Holzegel; I. Rodnianski Linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math., Volume 222 (2019), pp. 1-214 | DOI | Zbl

[24] P. K. Hung; J. Keller; M. T. Wang Linear stability of Schwarzschild spacetime: decay of metric coefficients, J. Differ. Geom., Volume 116 (2020), pp. 481-541 | Zbl

[25] T. W. Johnson The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge, Ann. PDE, Volume 5 (2019) no. 2, 13 | DOI | Zbl

[26] B. Whiting Mode stability of the Kerr black hole, J. Math. Phys., Volume 30 (1989), pp. 1301-1305 | DOI | Zbl

[27] C. Morawetz Decay of solutions of the exterior initial boundary value problem for the wave equation, Commun. Pure Appl. Math., Volume 14 (1961), pp. 561-568 | DOI | Zbl

[28] C. Morawetz; J. V. Ralston; W. A. Strauss Decay of solutions of the wave equation outside non-trapping obstacles, Commun. Pure Appl. Math., Volume 30 (1977), pp. 447-508 | DOI | Zbl

[29] S. Klainerman Uniform decay estimates and the Lorentz invariance of the classical wave equations, Commun. Pure Appl. Math., Volume 38 (1985), pp. 321-332 | DOI | Zbl

[30] S. Klainerman Remarks on the global Sobolev inequalities, Commun. Pure Appl. Math., Volume 40 (1987), pp. 111-117 | DOI | Zbl

[31] S. Klainerman Long time behavior of solutions to nonlinear wave equations, Proceedings of the International Congress of Mathematicians (Warsaw, 1983), Volume 1, 2, PWN, Warsaw (1984), pp. 1209-1215 | DOI | Zbl

[32] D. Christodoulou Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math., Volume 39 (1986), pp. 267-282 | DOI | Zbl

[33] S. Klainerman The Null Condition and global existence to nonlinear wave equations, Lect. Appl. Math., Volume 23 (1986), pp. 293-326 | Zbl

[34] S. Klainerman; F. Nicolo The Evolution Problem in General Relativity, Progress in Mathematical Physics, 25, Birkhauser, Boston, 2003, +385 pages | DOI

[35] S. Klainerman; F. Nicolo Peeling properties of asymptotic solutions to the Einstein vacuum equations, Class. Quantum Grav., Volume 20 (2003), pp. 3215-3257 | DOI

[36] H. Lindblad; I. Rodnianski Global existence in the Einstein Vacuum equations in wave co-ordinates, Commun. Math. Phys., Volume 256 (2005), pp. 43-110 | DOI | Zbl

[37] L. Bieri An extension of the stability theorem of the Minkowski space in general relativity, Ph. D. Thesis, ETH (2007)

[38] H. Lindblad On the asymptotic behavior of solutions to Einstein’s vacuum equations in wave coordinates, Commun. Math. Phys., Volume 353 (2017), pp. 135-184 | DOI | Zbl

[39] C. Huneau Stability of Minkowski spacetime with a translation space-like Killing field, Ann. PDE, Volume 4 (2018), 12 | DOI

[40] P. Hintz; A. Vasy Stability of Minkowski space and polyhomogeneity of the metric, Ann. PDE, Volume 6 (2020), 2 | DOI | Zbl

[41] O. Graf Global nonlinear stability of Minkowski space for spacelike-characteristic initial data | arXiv

[42] D. Shen Global stability of Minkowski space with minimal decay | arXiv

[43] L. Bieri; N. Zipser Extensions of the stability theorem of the Minkowski space in general relativity, AMS/IP Studies in Advanced Mathematics, American Mathematical Society, Providence, RI, 2009, xxiv+491 pages

[44] D. Fajman; J. Joudioux; J. Smulevici The stability of the Minkowski space for the Einstein–Vlasov system, Anal. PDE, Volume 14 (2021), pp. 425-531 | DOI | Zbl

[45] H. Lindblad; M. Taylor Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge, Arch. Rational Mech. Anal., Volume 235 (2020), pp. 517-633 | DOI | Zbl

[46] L. Bigorgne; D. Fajman; J. Joudioux; J. Smulevici; M. Thaller Asymptotic stability of Minkowski spacetime with non-compactly massless Vlasov matter, Arch. Rational Mech. Anal., Volume 242 (2021), pp. 1-147 | DOI | Zbl

[47] P. G. LeFloch; Y. Ma The global nonlinear stability of Minkowski space for self-gravitating massive fields, Commun. Math. Phys., Volume 346 (2016), pp. 603-665 | DOI | Zbl

[48] A. Ionescu; B. Pausader The Einstein–Klein–Gordon Coupled System: Global Stability of the Minkowski Solution, Annals of Math Studies, 213, Princeton University Press, Princeton NJ, 2022, xi+297 pages

[49] T. Regge; J. A. Wheeler Stability of a Schwarzschild singularity, Phys. Rev., Volume 108 (1957) no. 2, pp. 1063-1069 | DOI | Zbl

[50] C. V. Vishveshwara Stability of the Schwarzschild metric, Phys. Rev. D, Volume 1 (1970), pp. 2870-2879 | DOI

[51] F. J. Zerilli Effective potential for even-parity Regge–Wheeler gravitational perturbation equations, Phys. Rev. Lett., Volume 24 (1970), pp. 737-738 | DOI

[52] V. Moncrief Gravitational perturbations of spherically symmetric systems. I. The exterior problem, Ann. Phys., Volume 88 (1975), pp. 323-342 | DOI

[53] J. M. Bardeen; W. H. Press Radiation fields in the Schwarzschild background, J. Math. Phys., Volume 14 (1973), pp. 7-19 | DOI

[54] W. Press; S. A. Teukolsky Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric, Astrophys. J., Volume 185 (1973), pp. 649-673 | DOI

[55] S. Chandrasekhar On the equations governing the perturbations of the Schwarzschild black hole, Proc. R. Soc. Lond. A Math., Volume 343 (1975), pp. 289-298 | DOI

[56] R. M. Wald Construction of solutions of gravitational, electromagnetic, or other perturbation equations from solutions of decoupled equations, Phys. Rev. Lett., Volume 41 (1978), pp. 203-206 | DOI

[57] S. Aksteiner; L. Andersson; T. Bäckdahl; A. G. Shah; B. F. Whiting Gauge-invariant perturbations of Schwarzschild spacetime | arXiv

[58] F. Finsler; N. Kamran; J. Smoller; S.-T. Yau Decay of solutions of the wave equation in the Kerr geometry, Commun. Math. Phys., Volume 264 (2006), pp. 465-503 | DOI | Zbl

[59] Y. Shlapentokh-Rothman Quantitative mode stability for the wave equation on the Kerr spacetime, Ann. Henri Poincaré, Volume 16 (2015), pp. 289-345 | DOI | Zbl

[60] M. Dafermos; I. Rodnianski; Y. Shlapentokh-Rothman Decay for solutions of the wave equation on Kerr exterior spacetimes iii: The full subextremal case |a| < m, Ann. Math., Volume 183 (2016), pp. 787-913 | DOI | Zbl

[61] L. Andersson; S. Ma; C. Paganini; B. Whiting Mode stability on the real axis, J. Math. Phys., Volume 58 (2017), 072501 | DOI | Zbl

[62] F. Finsler; J. Smoller Linear stability of the non-extreme Kerr black hole, Adv. Theor. Math. Phys., Volume 21 (2017), pp. 1991-2085 | DOI | Zbl

[63] R. Teixeira da Costa Mode stability for the Teukolsky equation on extremal and subextremal Kerr spacetimes, Commun. Math. Phys., Volume 378 (2020), pp. 705-781 | DOI | Zbl

[64] B. S. Kay; R. M. Wald Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere, Class. Quantum Grav., Volume 4 (1987), pp. 893-898 | DOI | Zbl

[65] P. Blue; A. Soffer Semilinear wave equations on the Schwarzschild manifold. I. Local decay estimates, Adv. Differ. Equ., Volume 8 (2003), pp. 595-614 | Zbl

[66] M. Dafermos; I. Rodnianski The red-shift effect and radiation decay on black hole spacetimes, Commun. Pure Appl. Math., Volume 62 (2009), pp. 859-919 | DOI

[67] M. Dafermos; I. Rodnianski A new physical-space approach to decay for the wave equation with applications to black hole spacetimes, XVIth International Congress on Mathematical Physics, World Scientific Publishing, Hackensack, NJ (2010), pp. 421-432 | DOI | Zbl

[68] Y. Angelopoulos; S. Aretakis; D. Gajic A vector field approach to almost-sharp decay for the wave equation on spherically symmetric, stationary spacetimes, Ann. PDE, Volume 4 (2018), 15 | DOI | Zbl

[69] P. Blue; A. Soffer Errata for “Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds” , “Semilinear wave equations on the Schwarzschild manifold I: Local Decay Estimates”, and “The wave equation on the Schwarzschild metric II: Local Decay for the spin 2 Regge Wheeler equation” (6 pages) | arXiv

[70] P. Blue; J. Sterbenz Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space, Commun. Math. Phys., Volume 268 (2006), pp. 481-504 | DOI | Zbl

[71] J. Marzuola; J. Metcalfe; D. Tataru; M. Tohaneanu Strichartz estimates on Schwarzschild black hole backgrounds, Commun. Math. Phys., Volume 293 (2010), pp. 37-83 | DOI | Zbl

[72] A. Ionescu; S. Klainerman On the global stability of the wave-map equation in Kerr spaces with small angular momentum, Ann. PDE, Volume 1 (2015), 1 | DOI | Zbl

[73] J. Stogin Nonlinear wave dynamics in black hole spacetimes, Ph. D. Thesis, Princeton University, Princeton, NJ (2017)

[74] S. Alinhac Energy multipliers for perturbations of the Schwarzschild metric, Commun. Math. Phys., Volume 288 (2009), pp. 199-224 | DOI | Zbl

[75] M. Dafermos; I. Rodnianski A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, Invent. Math., Volume 185 (2011), pp. 467-559 | DOI | Zbl

[76] D. Tataru; M. Tohaneanu A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not., Volume 2 (2011), pp. 248-292 | DOI | Zbl

[77] L. Andersson; P. Blue Hidden symmetries and decay for the wave equation on the Kerr spacetime, Ann. Math., Volume 182 (2015) no. 2, pp. 787-853 | DOI | Zbl

[78] E. Giorgi The linear stability of Reissner–Nordström spacetime for small charge, Ann. PDE, Volume 6 (2020), 8 | DOI | Zbl

[79] E. Giorgi The linear stability of Reissner–Nordström spacetime: the full subextremal range |Q| < M, Commun. Math. Phys., Volume 13 (2020), pp. 1313-1360 | DOI | Zbl

[80] S. Klainerman; J. Szeftel Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations, Annals of Math Studies, 210, Princeton University Press, Princeton NJ, 2020, xviii+856 pages | DOI

[81] S. Ma Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity, Commun. Math. Phys., Volume 377 (2020), pp. 2489-2551 | DOI | Zbl

[82] M. Dafermos; G. Holzegel; I. Rodnianski Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case |a| M, Ann. PDE, Volume 5 (2019), 2 | DOI | Zbl

[83] Y. Shlapentokh-Rothman; R. Teixeira da Costa Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range |a| < M: frequency space analysis | arXiv

[84] Y. Shlapentokh-Rothman; R. Teixeira da Costa Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range |a| < M: physical space analysis | arXiv

[85] D. Häfner; P. Hintz; A. Vasy Linear stability of slowly rotating Kerr black holes, Invent. Math., Volume 223 (2021), pp. 1227-1406 | DOI | Zbl

[86] P. Millet Optimal decay for solutions of the Teukolsky equation on the Kerr metric for the full subextremal range |a| < M | arXiv

[87] L. Andersson; T. Bäckdahl; P. Blue; S. Ma Stability for linearized gravity on the Kerr spacetime | arXiv

[88] R. Geroch; A. Held; R. Penrose A space-time calculus based on pairs of null directions, J. Math. Phys., Volume 14 (1973), pp. 874-881 | DOI | Zbl

[89] P. Hintz; A. Vasy The global non-linear stability of the Kerr-de Sitter family of black holes, Acta Math., Volume 220 (2018), pp. 1-206 | DOI | Zbl

[90] H. Kodama; A. Ishibashi A master equation for gravitational pertur bations of maximally symmetric black holes in higher dimensions, Progr. Theor. Phys., Volume 110 (2003), pp. 701-722 | DOI | Zbl

[91] V. Schlue Decay of the Weyl curvature in expanding black hole cosmologies, Ann. PDE, Volume 8 (2022), 9 | DOI | Zbl

[92] A. J. Fang Linear stability of the slowly-rotating Kerr-de Sitter family | arXiv

[93] A. J. Fang Nonlinear stability of the slowly-rotating Kerr-de Sitter family | arXiv

[94] M. Dafermos; G. Holzegel; I. Rodnianski; M. Taylor The non-linear stability of the Schwarzschild family of black holes | arXiv

[95] X. Chen; S. Klainerman Regularity of the future event horizon in perturbations of Kerr (2024) ([gr-qc] 9 Sep) | arXiv

[96] D. Shen Kerr stability in external regions, Ann. PDE, Volume 10 (2024), 9 | DOI | Zbl

[97] A. Rizzi Angular momentum in general relativity: a new definition, Phys. Rev. Lett., Volume 81 (1998) no. 6, pp. 1150-1153 | DOI | Zbl

[98] P.-N. Chen; M.-T. Wang; S.-T. Yau Quasilocal angular momentum and center of mass in general relativity, Adv. Theor. Math. Phys., Volume 20 (2016), pp. 671-682 | DOI | Zbl

[99] P.-N. Chen; M.-T. Wang; Y.-K. Wang; S.-T. Yau Supertranslation invariance of angular momentum, Adv. Theor. Math. Phys., Volume 25 (2021), pp. 777-789 | DOI | Zbl

[100] L. B. Szabados Quasi-local energy-momentum and angular momentum in general relativity, Living Rev. Relativ., Volume 12 (2009), 4 | DOI | Zbl

[101] S. Klainerman; J. Luk; I. Rodnianski A fully anisotropic mechanism for formation of trapped surfaces in vacuum, Inventiones, Volume 198 (2014), pp. 1-26 | DOI | Zbl

[102] S. Chandrasekhar The Mathematical Theory of Black Holes, International Series of Monographs on Physics, Oxford University Press, Oxford, 1983

[103] E. Giorgi Electromagnetic-gravitational perturbations of Kerr–Newman spacetime: the Teukolsky and Regge–Wheeler equations, J. Hyperbolic Differ. Eqts., Volume 19 (2022), pp. 1-139 | DOI | Zbl

[104] E. Giorgi The Carter tensor and the physical-space analysis in perturbations of Kerr–Newman spacetime, J. Differ. Geom., Volume 127 (2024), pp. 277-371 | DOI | Zbl

[105] E. Giorgi Boundedness and Decay for the Teukolsky System in Kerr–Newman Spacetime I: The Case |a|,|Q| M (2023) | arXiv

[106] E. Giorgi; J. Wan Boundedness and Decay for the Teukolsky System in Kerr–Newman Spacetime II: The Case |a| M,|Q| < M in Axial Symmetry | arXiv

[107] L. He The linear stability of weakly charged and slowly rotating Kerr–Newman family of charged black holes (2023) (1–180) | arXiv

Cité par Sources :

Commentaires - Politique