Comptes Rendus
Logic/Algebra
Type-definable groups in C-minimal structures
[Groupes type-définissables dans les structures C-minimales]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 709-712.

Cette Note traite des groupes type-définissables dans les structures C-minimales. On démontre d'abord pour certains de ces groupes, qu'ils contiennent un cône qui est un sous-groupe. Ce résultat sera appliqué pour montrer que dans toute structure géométrique C-minimale non-triviale et localement modulaire, il y a un goupe C-minimal définissable infini.

This Note studies type-definable groups in C-minimal structures. We show first for some of these groups, that they contain a cone which is a subgroup. This result will be applied to show that in any geometric locally modular non-trivial C-minimal structure, there is a definable infinite C-minimal group.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.06.014

Fares Maalouf 1

1 Équipe de logique mathématique, CNRS-UFR de mathématiques, université Paris 7, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2010__348_13-14_709_0,
     author = {Fares Maalouf},
     title = {Type-definable groups in {\protect\emph{C}-minimal} structures},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {709--712},
     publisher = {Elsevier},
     volume = {348},
     number = {13-14},
     year = {2010},
     doi = {10.1016/j.crma.2010.06.014},
     language = {en},
}
TY  - JOUR
AU  - Fares Maalouf
TI  - Type-definable groups in C-minimal structures
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 709
EP  - 712
VL  - 348
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2010.06.014
LA  - en
ID  - CRMATH_2010__348_13-14_709_0
ER  - 
%0 Journal Article
%A Fares Maalouf
%T Type-definable groups in C-minimal structures
%J Comptes Rendus. Mathématique
%D 2010
%P 709-712
%V 348
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2010.06.014
%G en
%F CRMATH_2010__348_13-14_709_0
Fares Maalouf. Type-definable groups in C-minimal structures. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 709-712. doi : 10.1016/j.crma.2010.06.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.014/

[1] Adeleke; Neumann Relations Related to Betweenness: Their Structure and Automorphisms, Mem. Amer. Math. Soc., 1998

[2] E. Hrushovski, Contributions to stable model theory, PhD, Berkeley, 1986

[3] F. Maalouf Construction d'un groupe dans les structures c-minimales, The Journal of Symbolic Logic, Volume 73 (2008), pp. 957-968

[4] D. Macpherson; D. Haskell Cell decompositions of c-minimal structures, Annals of Pure and Applied Logic, Volume 66 (1994), pp. 113-162

[5] D. Macpherson; C. Steinhorn On variants of o-minimality, Annals of Pure and Applied Logic, Volume 79 (1996), pp. 165-209

[6] C. Milliet, Propriétés algébriques des structures menues ou minces, rang de cantor bendixson, espaces topologiques généralisés, PhD, Université Claude Bernard-Lyon 1, 2009

Cité par Sources :

Commentaires - Politique