Comptes Rendus
Calculus of Variations
A Modica–Mortola approximation for branched transport
[Une approximation à la Modica–Mortola pour le transport branché]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 941-945.

The Mα energy which is minimized in branched transport problems among singular 1-dimensional rectifiable vector measures with prescribed divergence is approximated by means of a sequence of elliptic energies, defined on more regular vector fields. The procedure recalls that of Modica–Mortola to approximate the perimeter, and the double-well potential is replaced by a concave power.

L'énergie Mα qui est minimisée dans les problèmes de transport branché parmi les mesures vectorielles (singulières et supportées sur des ensembles rectifiables de dimension 1) à divergence fixée est approximée par une suite d'énergies elliptiques, définies sur des champs de vecteurs plus réguliers. La procédure rappelle celle de Modica et Mortola pour le périmètre, et le potentiel à double puits est remplacé par une puissance concave.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.016

Filippo Santambrogio 1

1 CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, place de Lattre de Tassigny, 75775 Paris cedex 16, France
@article{CRMATH_2010__348_15-16_941_0,
     author = {Filippo Santambrogio},
     title = {A {Modica{\textendash}Mortola} approximation for branched transport},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {941--945},
     publisher = {Elsevier},
     volume = {348},
     number = {15-16},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.016},
     language = {en},
}
TY  - JOUR
AU  - Filippo Santambrogio
TI  - A Modica–Mortola approximation for branched transport
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 941
EP  - 945
VL  - 348
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2010.07.016
LA  - en
ID  - CRMATH_2010__348_15-16_941_0
ER  - 
%0 Journal Article
%A Filippo Santambrogio
%T A Modica–Mortola approximation for branched transport
%J Comptes Rendus. Mathématique
%D 2010
%P 941-945
%V 348
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2010.07.016
%G en
%F CRMATH_2010__348_15-16_941_0
Filippo Santambrogio. A Modica–Mortola approximation for branched transport. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 941-945. doi : 10.1016/j.crma.2010.07.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.016/

[1] P. Aviles; Y. Giga A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. ANU, Volume 12 (1987), pp. 1-16

[2] M. Bernot; V. Caselles; J.-M. Morel Optimal Transportation Networks, Models and Theory, Lecture Notes in Math., vol. 1955, Springer, 2008

[3] F. Bethuel; H. Brezis; F. Hélein Ginzburg–Landau Vortices, Birkhäuser, 1994

[4] G. Bouchitté; C. Dubs; P. Seppecher Transitions de phases avec un potentiel dégénéré à l'infini, application à l'équilibre de petites gouttes, C. R. Acad. Sci., Sér. I, Volume 323 (1996), pp. 1103-1108

[5] A. Braides Approximation of Free-Discontinuity Problems, Lecture Notes in Math., vol. 1694, Springer-Verlag, Berlin, 1998

[6] G. Dal Maso An Introduction to Γ-Convergence, Birkhäuser, Basel, 1992

[7] E. De Giorgi; T. Franzoni Su un tipo di convergenza variazionale, Atti Acc. Naz. Lincei Rend., Volume 58 (1975) no. 8, pp. 842-850

[8] L. Modica; S. Mortola Un esempio di Γ-convergenza, Boll. Unione Mat. Ital. Sez. B, Volume 14 (1977) no. 1, pp. 285-299 (in Italian)

[9] J.-M. Morel; F. Santambrogio Comparison of distances between measures, Appl. Math. Lett., Volume 20 (2007) no. 4, pp. 427-432

[10] E. Oudet, F. Santambrogio, A Modica–Mortola approximation for branched transport and applications, in preparation.

[11] F. Santambrogio http://cvgmt.sns.it/papers/san09/ (manuscript available at)

[12] Q. Xia Optimal paths related to transport problems, Commun. Contemp. Math., Volume 5 (2003) no. 2, pp. 251-279

  • Antonin Chambolle; Luca Alberto Davide Ferrari; Benoit Merlet Strong approximation inh-mass of rectifiable currents under homological constraint, Advances in Calculus of Variations, Volume 14 (2021) no. 3, p. 343 | DOI:10.1515/acv-2018-0079
  • Enrico Facca; Franco Cardin; Mario Putti Branching structures emerging from a continuous optimal transport model, Journal of Computational Physics, Volume 447 (2021), p. 110700 | DOI:10.1016/j.jcp.2021.110700
  • Alberto Bressan; Michele Palladino; Qing Sun Variational problems for tree roots and branches, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 1 | DOI:10.1007/s00526-019-1666-1
  • Paul Pegon; Filippo Santambrogio; Qinglan Xia A fractal shape optimization problem in branched transport, Journal de Mathématiques Pures et Appliquées, Volume 123 (2019), p. 244 | DOI:10.1016/j.matpur.2018.06.007
  • Alberto Bressan; Qing Sun On the optimal shape of tree roots and branches, Mathematical Models and Methods in Applied Sciences, Volume 28 (2018) no. 14, p. 2763 | DOI:10.1142/s0218202518500604
  • Antonin Monteil Uniform estimates for a Modica–Mortola type approximation of branched transportation, ESAIM: Control, Optimisation and Calculus of Variations, Volume 23 (2017) no. 1, p. 309 | DOI:10.1051/cocv/2015049
  • Matthieu Bonnivard; Antoine Lemenant; Filippo Santambrogio Approximation of Length Minimization Problems Among Compact Connected Sets, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 2, p. 1489 | DOI:10.1137/14096061x
  • Edouard Oudet; Filippo Santambrogio A Modica-Mortola Approximation for Branched Transport and Applications, Archive for Rational Mechanics and Analysis, Volume 201 (2011) no. 1, p. 115 | DOI:10.1007/s00205-011-0402-6

Cité par 8 documents. Sources : Crossref

Commentaires - Politique