[Une approximation à la Modica–Mortola pour le transport branché]
The
L'énergie
Accepté le :
Publié le :
Filippo Santambrogio 1
@article{CRMATH_2010__348_15-16_941_0, author = {Filippo Santambrogio}, title = {A {Modica{\textendash}Mortola} approximation for branched transport}, journal = {Comptes Rendus. Math\'ematique}, pages = {941--945}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.07.016}, language = {en}, }
Filippo Santambrogio. A Modica–Mortola approximation for branched transport. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 941-945. doi : 10.1016/j.crma.2010.07.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.016/
[1] A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. ANU, Volume 12 (1987), pp. 1-16
[2] Optimal Transportation Networks, Models and Theory, Lecture Notes in Math., vol. 1955, Springer, 2008
[3] Ginzburg–Landau Vortices, Birkhäuser, 1994
[4] Transitions de phases avec un potentiel dégénéré à l'infini, application à l'équilibre de petites gouttes, C. R. Acad. Sci., Sér. I, Volume 323 (1996), pp. 1103-1108
[5] Approximation of Free-Discontinuity Problems, Lecture Notes in Math., vol. 1694, Springer-Verlag, Berlin, 1998
[6] An Introduction to Γ-Convergence, Birkhäuser, Basel, 1992
[7] Su un tipo di convergenza variazionale, Atti Acc. Naz. Lincei Rend., Volume 58 (1975) no. 8, pp. 842-850
[8] Un esempio di Γ-convergenza, Boll. Unione Mat. Ital. Sez. B, Volume 14 (1977) no. 1, pp. 285-299 (in Italian)
[9] Comparison of distances between measures, Appl. Math. Lett., Volume 20 (2007) no. 4, pp. 427-432
[10] E. Oudet, F. Santambrogio, A Modica–Mortola approximation for branched transport and applications, in preparation.
[11] http://cvgmt.sns.it/papers/san09/ (manuscript available at)
[12] Optimal paths related to transport problems, Commun. Contemp. Math., Volume 5 (2003) no. 2, pp. 251-279
- Strong approximation inh-mass of rectifiable currents under homological constraint, Advances in Calculus of Variations, Volume 14 (2021) no. 3, p. 343 | DOI:10.1515/acv-2018-0079
- Branching structures emerging from a continuous optimal transport model, Journal of Computational Physics, Volume 447 (2021), p. 110700 | DOI:10.1016/j.jcp.2021.110700
- Variational problems for tree roots and branches, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 1 | DOI:10.1007/s00526-019-1666-1
- A fractal shape optimization problem in branched transport, Journal de Mathématiques Pures et Appliquées, Volume 123 (2019), p. 244 | DOI:10.1016/j.matpur.2018.06.007
- On the optimal shape of tree roots and branches, Mathematical Models and Methods in Applied Sciences, Volume 28 (2018) no. 14, p. 2763 | DOI:10.1142/s0218202518500604
- Uniform estimates for a Modica–Mortola type approximation of branched transportation, ESAIM: Control, Optimisation and Calculus of Variations, Volume 23 (2017) no. 1, p. 309 | DOI:10.1051/cocv/2015049
- Approximation of Length Minimization Problems Among Compact Connected Sets, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 2, p. 1489 | DOI:10.1137/14096061x
- A Modica-Mortola Approximation for Branched Transport and Applications, Archive for Rational Mechanics and Analysis, Volume 201 (2011) no. 1, p. 115 | DOI:10.1007/s00205-011-0402-6
Cité par 8 documents. Sources : Crossref
Commentaires - Politique