[Géométrie globale des espaces–temps
Nous définissons la classe des espaces–temps à symétrie
We define the class of weakly regular spacetimes with
Accepté le :
Publié le :
Philippe G. LeFloch 1 ; Jacques Smulevici 2
@article{CRMATH_2010__348_21-22_1231_0, author = {Philippe G. LeFloch and Jacques Smulevici}, title = {Global geometry of $ {T}^{2}$-symmetric spacetimes with weak regularity}, journal = {Comptes Rendus. Math\'ematique}, pages = {1231--1233}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.09.009}, language = {en}, }
TY - JOUR AU - Philippe G. LeFloch AU - Jacques Smulevici TI - Global geometry of $ {T}^{2}$-symmetric spacetimes with weak regularity JO - Comptes Rendus. Mathématique PY - 2010 SP - 1231 EP - 1233 VL - 348 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2010.09.009 LA - en ID - CRMATH_2010__348_21-22_1231_0 ER -
Philippe G. LeFloch; Jacques Smulevici. Global geometry of $ {T}^{2}$-symmetric spacetimes with weak regularity. Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1231-1233. doi : 10.1016/j.crma.2010.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.009/
[1] Global foliations of vacuum spacetimes with
[2] General Relativity and the Einstein Equations, Oxford Math. Monographs, Oxford Univ. Press, 2009
[3] Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys., Volume 14 (1969), pp. 329-335
[4] On spacetimes with
[5] Théorèmes d'existence pour certains systèmes d'équations aux dérivées partielles non-linéaires, Acta Math., Volume 88 (1952), pp. 141-225
[6] On the area of the symmetry orbits in
[7] Rough solutions of the Einstein vacuum equations, Ann. of Math., Volume 161 (2005), pp. 1143-1193
[8] Definition and weak stability of spacetimes with distributional curvature, Port. Math., Volume 64 (2007), pp. 535-573
[9] A global foliation of Einstein–Euler spacetimes with Gowdy symmetry on
[10] P.G. LeFloch, J. Smulevici, Global geometry of future expanding
[11] Shock waves and gravitational waves in matter spacetimes with Gowdy symmetry, Port. Math., Volume 62 (2005), pp. 349-370
[12] The characteristic initial value problem for plane symmetric spacetimes with weak regularity (preprint) | arXiv
[13] Global properties of Gowdy spacetimes with
[14] Existence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry, Comm. Math. Phys., Volume 189 (1997), pp. 145-164
[15] On a wave map equation arising in general relativity, Comm. Pure Appl. Math., Volume 57 (2004), pp. 657-703
[16] J. Smulevici, On the area of the symmetry orbits in spacetimes with toroidal or hyperbolic symmetry, Analysis and PDE, submitted for publication.
Cité par Sources :
Commentaires - Politique