[(e)-convergence et problème connexe]
On donne une réponse négative à une question posée par Zobroska (2003) dans [13] ; cette question porte sur le comportement à la frontière des symboles de Berezin d'opérateurs spaciaux de Bergman. On introduit aussi les notions de (e)-sommabilité de suites et de séries de nombres complexes et on étudie certaines de leurs propriétés. Comme corollaire, on retrouve les théorèmes classiques de Abel sur la théorie de la sommabilité.
We answer negatively to a question of Zorboska (2003) [13], which is concerned to the boundary behavior of Berezin symbols of Bergman space operators. We also introduce the notions of (e)-summability of sequences and series of complex numbers, and study some of their properties. As a corollary, we obtain the classical Abel theorems of summability theory.
Accepté le :
Publié le :
Mübariz Tapdıgoğlu Karaev 1
@article{CRMATH_2010__348_19-20_1059_0, author = {M\"ubariz Tapd{\i}go\u{g}lu Karaev}, title = {(\protect\emph{e})-convergence and related problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {1059--1062}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.09.017}, language = {en}, }
Mübariz Tapdıgoğlu Karaev. (e)-convergence and related problem. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1059-1062. doi : 10.1016/j.crma.2010.09.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.017/
[1] An invariant volume-mean-value property, J. Funct. Anal., Volume 111 (1993), pp. 233-254
[2] Covariant and contravariant symbols for operators, Math. USSR-Izv., Volume 6 (1972), pp. 1117-1151
[3] Quantization, Math. USSR-Izv., Volume 8 (1974), pp. 1109-1163
[4] Toeplitz operators and quantum mechanics, J. Funct. Anal., Volume 68 (1986), pp. 273-299
[5] Toeplitz operators on the Segal–Bergman space, Trans. Amer. Math. Soc., Volume 301 (1987), pp. 813-829
[6] Functions invariant under the Berezin transform, J. Funct. Anal., Volume 121 (1994), pp. 223-254
[7] Uniqueness theorems for analytic vector-valued functions, J. Math. Sci. (N. Y.), Volume 101 (2000), pp. 3193-3210 (translation from Zap. Nauchn. Semin. POMI, 247, 1997, pp. 242-267)
[8]
, Divergent Series, Oxford, 1956[9] Theory of Bergman Spaces, Springer Verlag, 2000
[10] On some problems related to Berezin symbols, C. R. Acad. Sci. Paris, Volume 340 (2005), pp. 715-718
[11] Boundary values of Berezin symbols, Oper. Theory Adv. Appl., Volume 73 (1994), pp. 362-368
[12] Operator Theory in Function Spaces, Marcel Dekker, New York, 1990
[13] The Berezin transform and radial operators, Proc. Amer. Math. Soc., Volume 131 (2003), pp. 793-800
Cité par Sources :
Commentaires - Politique