Comptes Rendus
Mathematical Analysis/Functional Analysis
(e)-convergence and related problem
[(e)-convergence et problème connexe]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1059-1062.

On donne une réponse négative à une question posée par Zobroska (2003) dans [13] ; cette question porte sur le comportement à la frontière des symboles de Berezin d'opérateurs spaciaux de Bergman. On introduit aussi les notions de (e)-sommabilité de suites et de séries de nombres complexes et on étudie certaines de leurs propriétés. Comme corollaire, on retrouve les théorèmes classiques de Abel sur la théorie de la sommabilité.

We answer negatively to a question of Zorboska (2003) [13], which is concerned to the boundary behavior of Berezin symbols of Bergman space operators. We also introduce the notions of (e)-summability of sequences and series of complex numbers, and study some of their properties. As a corollary, we obtain the classical Abel theorems of summability theory.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.09.017

Mübariz Tapdıgoğlu Karaev 1

1 Isparta Vocational School, Suleyman Demirel University, 32260, Isparta, Turkey
@article{CRMATH_2010__348_19-20_1059_0,
     author = {M\"ubariz Tapd{\i}go\u{g}lu Karaev},
     title = {(\protect\emph{e})-convergence and related problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1059--1062},
     publisher = {Elsevier},
     volume = {348},
     number = {19-20},
     year = {2010},
     doi = {10.1016/j.crma.2010.09.017},
     language = {en},
}
TY  - JOUR
AU  - Mübariz Tapdıgoğlu Karaev
TI  - (e)-convergence and related problem
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1059
EP  - 1062
VL  - 348
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2010.09.017
LA  - en
ID  - CRMATH_2010__348_19-20_1059_0
ER  - 
%0 Journal Article
%A Mübariz Tapdıgoğlu Karaev
%T (e)-convergence and related problem
%J Comptes Rendus. Mathématique
%D 2010
%P 1059-1062
%V 348
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2010.09.017
%G en
%F CRMATH_2010__348_19-20_1059_0
Mübariz Tapdıgoğlu Karaev. (e)-convergence and related problem. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1059-1062. doi : 10.1016/j.crma.2010.09.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.017/

[1] P. Ahern; M. Floers; W. Rudin An invariant volume-mean-value property, J. Funct. Anal., Volume 111 (1993), pp. 233-254

[2] F.A. Berezin Covariant and contravariant symbols for operators, Math. USSR-Izv., Volume 6 (1972), pp. 1117-1151

[3] F.A. Berezin Quantization, Math. USSR-Izv., Volume 8 (1974), pp. 1109-1163

[4] C.A. Berger; L.A. Coburn Toeplitz operators and quantum mechanics, J. Funct. Anal., Volume 68 (1986), pp. 273-299

[5] C.A. Berger; L.A. Coburn Toeplitz operators on the Segal–Bergman space, Trans. Amer. Math. Soc., Volume 301 (1987), pp. 813-829

[6] M. Engliś Functions invariant under the Berezin transform, J. Funct. Anal., Volume 121 (1994), pp. 223-254

[7] E. Fricain Uniqueness theorems for analytic vector-valued functions, J. Math. Sci. (N. Y.), Volume 101 (2000), pp. 3193-3210 (translation from Zap. Nauchn. Semin. POMI, 247, 1997, pp. 242-267)

[8] G.H. Hardy, Divergent Series, Oxford, 1956

[9] H. Hedenmalm; B. Korenblum; K. Zhu Theory of Bergman Spaces, Springer Verlag, 2000

[10] M.T. Karaev On some problems related to Berezin symbols, C. R. Acad. Sci. Paris, Volume 340 (2005), pp. 715-718

[11] E. Nordgren; P. Rosenthal Boundary values of Berezin symbols, Oper. Theory Adv. Appl., Volume 73 (1994), pp. 362-368

[12] K. Zhu Operator Theory in Function Spaces, Marcel Dekker, New York, 1990

[13] N. Zorboska The Berezin transform and radial operators, Proc. Amer. Math. Soc., Volume 131 (2003), pp. 793-800

Cité par Sources :

Commentaires - Politique