Comptes Rendus
Number Theory/Dynamical Systems
Towards an effective version of Mazur conjecture
[Vers une version effective de la conjecture de Mazur]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1245-1247.

Dans cette Note on présente une vue axiomatique de l'argument principal de la démonstration par Cornut–Vatsal de la conjecture de Mazur. Notre objectif est d'extraire des énoncés ergodiques clairs et de discuter une possible stratégie vers une version effective.

In this Note we present an axiomatic exposition of Cornut–Vatsal's main ingredient in their proof of Mazur conjecture. Our aim is to extract clean ergodic statements and discuss a possible strategy towards effectivity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.011

Nicolas Templier 1

1 Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
@article{CRMATH_2010__348_23-24_1245_0,
     author = {Nicolas Templier},
     title = {Towards an effective version of {Mazur} conjecture},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1245--1247},
     publisher = {Elsevier},
     volume = {348},
     number = {23-24},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.011},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Templier
TI  - Towards an effective version of Mazur conjecture
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1245
EP  - 1247
VL  - 348
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2010.10.011
LA  - en
ID  - CRMATH_2010__348_23-24_1245_0
ER  - 
%0 Journal Article
%A Nicolas Templier
%T Towards an effective version of Mazur conjecture
%J Comptes Rendus. Mathématique
%D 2010
%P 1245-1247
%V 348
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2010.10.011
%G en
%F CRMATH_2010__348_23-24_1245_0
Nicolas Templier. Towards an effective version of Mazur conjecture. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1245-1247. doi : 10.1016/j.crma.2010.10.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.011/

[1] C. Cornut Mazur's conjecture on higher Heegner points, Invent. Math., Volume 148 (2002) no. 3, pp. 495-523

[2] C. Cornut Normes p-adiques et extensions quadratiques, Ann. Inst. Fourier, Volume 59 (2009), pp. 2223-2254

[3] C. Cornut; V. Vatsal CM points and quaternion algebras, Doc. Math., Volume 10 (2005), pp. 263-309 (electronic)

[4] C. Cornut; V. Vatsal Nontriviality of Rankin–Selberg L-functions and CM points, L-Functions and Galois Representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 121-186

[5] G.A. Margulis; G.M. Tomanov Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., Volume 116 (1994) no. 1–3, pp. 347-392

[6] B. Mazur Modular curves and arithmetic, Warsaw, 1983, PWN, Warsaw (1984), pp. 185-211

[7] M. Ratner Raghunathan's conjectures for Cartesian products of real and p-adic Lie groups, Duke Math. J., Volume 77 (1995) no. 2, pp. 275-382

[8] N. Shah Unipotent flows on products of SL(2,K)/Γ's, Séminaires et congrès, Volume 22 (2009), pp. 71-106

[9] V. Vatsal Special values of anticyclotomic L-functions, Duke Math. J., Volume 116 (2003) no. 2, pp. 219-261

Cité par Sources :

Commentaires - Politique