[Détermination d'un terme source dans une équation parabolique dégénérée à partir d'une observation interne localisée]
Le but de cette Note est de montrer un résultat d'unicité et stabilité pour un problème inverse consistant à déterminer un terme source dans une équation parabolique dégénérée en dimension 1. On reprend la méthode introduite par Imanuvilov et Yamamoto en 1998 en précisant une inégalité de Carleman récente obtenue par Cannarsa, Martinez et Vancostenoble.
The aim of this Note is to prove a Lipschitz stability and uniqueness result for an inverse source problem relative to a one-dimensional degenerate parabolic equation. We use the method introduced by Imanuvilov and Yamamoto in 1998, with the help of some recent Carleman estimate for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble.
Accepté le :
Publié le :
Jacques Tort 1
@article{CRMATH_2010__348_23-24_1287_0, author = {Jacques Tort}, title = {Determination of source terms in a degenerate parabolic equation from a locally distributed observation}, journal = {Comptes Rendus. Math\'ematique}, pages = {1287--1291}, publisher = {Elsevier}, volume = {348}, number = {23-24}, year = {2010}, doi = {10.1016/j.crma.2010.10.031}, language = {en}, }
TY - JOUR AU - Jacques Tort TI - Determination of source terms in a degenerate parabolic equation from a locally distributed observation JO - Comptes Rendus. Mathématique PY - 2010 SP - 1287 EP - 1291 VL - 348 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2010.10.031 LA - en ID - CRMATH_2010__348_23-24_1287_0 ER -
Jacques Tort. Determination of source terms in a degenerate parabolic equation from a locally distributed observation. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1287-1291. doi : 10.1016/j.crma.2010.10.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.031/
[1] An inverse problem for the Schrödinger equation, Inverse Problems, Volume 18 (2002) no. 6, pp. 1537-1554
[2] Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim., Volume 46 (2007) no. 5, pp. 1849-1881
[3] Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., Volume 47 (2008) no. 1, pp. 1-19
[4] Null controllability of degenerate heat equations, Adv. Differential Equations, Volume 10 (2005) no. 2, pp. 153-190
[5] P. Cannarsa, J. Tort, M. Yamamoto, Determination of source terms in a degenerate parabolic equation, in preparation.
[6] Inverse problems for a two by two reaction diffusion system using a Carleman estimate with one observation, Inverse Problems, Volume 22 (2006) no. 5, pp. 1561-1573
[7] Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Seoul National University, Seoul, Korea, 1996
[8] Lipschitz stability in inverse parabolic problems by the Carleman estimates, Inverse Problems, Volume 14 (1998) no. 5, pp. 1229-1245
[9] Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Eq., Volume 6 (2006) no. 2, pp. 325-362
[10] Applications of exact controllability to some inverse problems for the wave equation, Laredo, 1994 (Lecture Notes in Pure and Appl. Math.), Volume vol. 174, Dekker, New York (1996), pp. 241-249
[11] Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 801-805
[12] Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems, Volume 17 (2001) no. 4, pp. 1181-1202
Cité par Sources :
Commentaires - Politique