Comptes Rendus
Partial Differential Equations/Optimal Control
Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems
[Inégalités fines de Carleman pour des problèmes paraboliques singuliers et application à des problèmes inverses]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 801-805.

On étudie la stabilité Lipschitzienne pour des problèmes inverses de détermination d'une source pour l'équation de la chaleur perturbée par un potentiel singulier de la forme μ/|x|2 avec μμ(N):=(N2)2/4μ(N) est la constante optimale de l'inégalité de Hardy. Suivant Immanuvilov et Yamamoto (1998) [9], notre preuve repose sur des inégalités de Carleman telles que celles introduites par Fursikov et Immanuvilov (1996) [8] pour l'équation de la chaleur classique. Cependant, il faut ici tenir compte de la singularité. La première étape de la preuve consiste donc en une amélioration des inegalités de Carleman spécifiquement démontrées pour des equations avec un potentiel singulier par Vancostenoble et Zuazua (2008) [15] puis Ervedoza (2008) [7]. Certaines étapes majeures reposent sur diverses formes améliorées de l'inégalité de Hardy.

We address the question of Lipschitz stability results in inverse source problems for the heat equation perturbed by a singular inverse-square potential μ/|x|2 when μμ(N):=(N2)2/4 where μ(N) is the optimal constant in the so-called Hardy inequality. Following Immanuvilov and Yamamoto (1998) [9], our proof is based on Carleman inequalities like those developed by Fursikov and Immanuvilov (1996) [8] for the classical heat equation. However, we need here to take into account the singularity. Therefore, the first step of the proof consists in some improvements of the Carleman inequalities specifically developed for equations with inverse-square potentials by Vancostenoble and Zuazua (2008) [15] and next Ervedoza (2008) [7]. Major steps rely on various improved forms of the Hardy inequality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.06.001

Judith Vancostenoble 1

1 Institut de mathématiques de Toulouse, UMR CNRS 5219, université Paul-Sabatier Toulouse III, 118 route de Narbonne, 31062 Toulouse cedex 4, France
@article{CRMATH_2010__348_13-14_801_0,
     author = {Judith Vancostenoble},
     title = {Sharp {Carleman} estimates for singular parabolic equations and application to {Lipschitz} stability in inverse source problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {801--805},
     publisher = {Elsevier},
     volume = {348},
     number = {13-14},
     year = {2010},
     doi = {10.1016/j.crma.2010.06.001},
     language = {en},
}
TY  - JOUR
AU  - Judith Vancostenoble
TI  - Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 801
EP  - 805
VL  - 348
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2010.06.001
LA  - en
ID  - CRMATH_2010__348_13-14_801_0
ER  - 
%0 Journal Article
%A Judith Vancostenoble
%T Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems
%J Comptes Rendus. Mathématique
%D 2010
%P 801-805
%V 348
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2010.06.001
%G en
%F CRMATH_2010__348_13-14_801_0
Judith Vancostenoble. Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 801-805. doi : 10.1016/j.crma.2010.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.001/

[1] P. Baras; J. Goldstein Remarks on the inverse square potential in quantum mechanics, Birmingham, Ala., 1983 (North-Holland Math. Stud.), Volume vol. 92, North-Holland, Amsterdam (1984), pp. 31-35

[2] A. Benabdallah; P. Gaitan; J. Le Rousseau Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim., Volume 46 (2007) no. 5, pp. 1849-1881

[3] P. Cannarsa; P. Martinez; J. Vancostenoble Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., Volume 47 (2008) no. 1, pp. 1-19

[4] P. Cannarsa; P. Martinez; J. Vancostenoble Carleman estimates and null controllability for boundary-degenerate parabolic operators, C. R. Acad. Sci. Sér. I Math., Volume 347 (2009) no. 3–4, pp. 147-152

[5] P. Cannarsa, P. Martinez, J. Vancostenoble, Carleman estimates for degenerate parabolic operators with applications, in press

[6] P. Cannarsa, J. Tort, M. Yamamoto, Determination of source terms in a degenerate parabolic equation, in press

[7] S. Ervedoza Control and stabilization properties for a singular heat equation with an inverse-square potential, Comm. in PDE 33, Volume 11 (2008), pp. 1996-2019

[8] A.V. Fursikov; O.Yu. Imanuvilov Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Seoul, Korea, 1996

[9] O.Y. Imanuvilov; M. Yamamoto Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, Volume 14 (1998) no. 5, pp. 1229-1245

[10] V. Isakov Inverse Source Problems, Mathematical Surveys and Monographs, vol. 34, American Mathematical Society, Providence, RI, 1990

[11] M.V. Klibanov; A. Timonov Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2004 (iv+282 pp)

[12] P. Martinez; J. Vancostenoble Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., Volume 6 (2006) no. 2, pp. 325-362

[13] J.-P. Puel; M. Yamamoto On a global estimate in a linear inverse hyperbolic problem, Inverse Problems, Volume 12 (1996) no. 6, pp. 995-1002

[14] J. Tort, Determination of source terms in a degenerate parabolic equation from a locally distributed observation, C. R. Acad. Sci. Sér., in press

[15] J. Vancostenoble; E. Zuazua Null controllability for the heat equation with singular inverse-square potentials, J. Funct. Anal., Volume 254 (2008) no. 7, pp. 1864-1902

[16] J. Vancostenoble; E. Zuazua Hardy inequalities, observability and control for the wave and Schrödinger equations with singular potentials, SIAM J. Math. Anal., Volume 41 (2009) no. 4, pp. 1508-1532

[17] J.L. Vázquez; E. Zuazua The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., Volume 173 (2000) no. 1, pp. 103-153

Cité par Sources :

Commentaires - Politique