[Le lemme div–rot pour les suites dont la divergence et la boucle sont bornées dans
It is shown that
On montre que
Accepté le :
Publié le :
Sergio Conti 1 ; Georg Dolzmann 2 ; Stefan Müller 1, 3
@article{CRMATH_2011__349_3-4_175_0, author = {Sergio Conti and Georg Dolzmann and Stefan M\"uller}, title = {The div{\textendash}curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {175--178}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.11.013}, language = {en}, }
TY - JOUR AU - Sergio Conti AU - Georg Dolzmann AU - Stefan Müller TI - The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$ JO - Comptes Rendus. Mathématique PY - 2011 SP - 175 EP - 178 VL - 349 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2010.11.013 LA - en ID - CRMATH_2011__349_3-4_175_0 ER -
%0 Journal Article %A Sergio Conti %A Georg Dolzmann %A Stefan Müller %T The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$ %J Comptes Rendus. Mathématique %D 2011 %P 175-178 %V 349 %N 3-4 %I Elsevier %R 10.1016/j.crma.2010.11.013 %G en %F CRMATH_2011__349_3-4_175_0
Sergio Conti; Georg Dolzmann; Stefan Müller. The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 175-178. doi : 10.1016/j.crma.2010.11.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.013/
[1] Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal., Volume 86 (1984), pp. 125-145
[2] An approximation lemma for
[3] Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4), Volume 135 (1983), pp. 293-318
[4] Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., Volume 107 (1989), pp. 655-663
[5] Lower semicontinuity of multiple integrals and the biting lemma, Proc. Roy. Soc. Edinburgh Sect. A, Volume 114 (1990), pp. 367-379
[6] The div–curl lemma “trente ans après” an extension and an application to the G-convergence of unbounded monotone operators, J. Math. Pures Appl., Volume 91 (2009), pp. 476-494
[7] Continuity and compactness of measures, Adv. in Math., Volume 37 (1980), pp. 16-26
[8] Compensated compactness and Hardy spaces, J. Math. Pures Appl., Volume 72 (1993), pp. 247-286
[9] S. Conti, G. Dolzmann, C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, 2010, preprint.
[10] Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side, J. Reine Angew. Math., Volume 520 (2000), pp. 1-35
[11] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[12] A Luzin type property of Sobolev functions, Indiana Univ. Math. J., Volume 26 (1977), pp. 645-651
[13] A sharp version of Zhang's theorem on truncating sequences of gradients, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 4585-4597
[14] Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 5 (1978), pp. 489-507
[15] Compacité par compensation : condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 8 (1981), pp. 69-102
[16] Extraction of a “good” subsequence from a bounded sequence of integrable functions, J. Convex Anal., Volume 2 (1995), pp. 345-357
[17] L. Tartar Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires, in: Journ. d'Anal. non lin., Proc., Besancon, 1977, in: Lect. Notes Math., vol. 665, 1978, pp. 228–241.
[18] L. Tartar, Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot–Watt Symp., vol. 4, in: Edinburgh Res. Notes Math., vol. 39, 1979, pp. 136–212.
[19] The compensated compactness method applied to systems of conservation laws, Oxford, 1982 (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 111, Reidel, Dordrecht (1983), pp. 263-285
[20] A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 19 (1992), pp. 313-326
- Global finite-energy solutions of the compressible Euler-Poisson equations for general pressure laws with large initial data of spherical symmetry, Communications in Mathematical Physics, Volume 405 (2024) no. 3, p. 85 (Id/No 77) | DOI:10.1007/s00220-023-04916-1 | Zbl:1536.35258
- A New Divergence-Curl Result for Measures. Application to the Two-Dimensional ODE’s Flow, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 5, p. 6398 | DOI:10.1137/23m1617539
- Compensated compactness: continuity in optimal weak topologies, Journal of Functional Analysis, Volume 283 (2022) no. 7, p. 46 (Id/No 109596) | DOI:10.1016/j.jfa.2022.109596 | Zbl:1521.47076
- Homogenization of Elliptic PDE with Varying Coefficients, Optimal Design of Multi-Phase Materials (2022), p. 1 | DOI:10.1007/978-3-030-98191-4_1
- Quasistatic evolution for dislocation-free finite plasticity, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 26 (2020), p. 23 (Id/No 123) | DOI:10.1051/cocv/2020031 | Zbl:1465.35373
- Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 54 (2020) no. 1, pp. 105-128 | DOI:10.1051/m2an/2019053 | Zbl:1450.76031
- Inviscid limit of the compressible Navier-Stokes equations for asymptotically isothermal gases, Journal of Differential Equations, Volume 269 (2020) no. 10, pp. 8640-8685 | DOI:10.1016/j.jde.2020.06.018 | Zbl:1442.35310
- A remark on the non-compactness of
-immersions of -dimensional hypersurfaces, Proceedings of the American Mathematical Society, Volume 148 (2020) no. 5, pp. 2245-2255 | DOI:10.1090/proc/14710 | Zbl:1436.53007 - A model for the evolution of highly reversible martensitic transformations, M
AS. Mathematical Models Methods in Applied Sciences, Volume 29 (2019) no. 3, pp. 493-530 | DOI:10.1142/s0218202519500143 | Zbl:1428.35591 - On weak closure of some diffusion equations, Proceedings of the American Mathematical Society, Volume 147 (2019) no. 9, pp. 3803-3811 | DOI:10.1090/proc/14610 | Zbl:1439.35499
- Vanishing viscosity limit of the compressible Navier-Stokes equations with general pressure law, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, pp. 2168-2205 | DOI:10.1137/18m1224362 | Zbl:1419.35167
- Fractional div-curl quantities and applications to nonlocal geometric equations, Journal of Functional Analysis, Volume 275 (2018) no. 1, pp. 1-44 | DOI:10.1016/j.jfa.2018.03.016 | Zbl:1440.42114
- Kinematics of elasto-plasticity: validity and limits of applicability of
for general three-dimensional deformations, Journal of the Mechanics and Physics of Solids, Volume 121 (2018), pp. 99-113 | DOI:10.1016/j.jmps.2018.07.006 | Zbl:1479.74016 - Global weak rigidity of the Gauss-Codazzi-Ricci equations and isometric immersions of Riemannian manifolds with lower regularity, The Journal of Geometric Analysis, Volume 28 (2018) no. 3, pp. 1957-2007 | DOI:10.1007/s12220-017-9893-1 | Zbl:1407.53040
- On the existence of minimisers for strain-gradient single-crystal plasticity, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 98 (2018) no. 3, pp. 431-447 | DOI:10.1002/zamm.201700032 | Zbl:1538.49001
- Journal of the Mechanics and Physics of Solids, 107 (2017), pp. 322-342 | DOI:10.1016/j.jmps.2017.07.004 | Zbl:1442.74004
- Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems, Analysis PDE, Volume 9 (2016) no. 5, p. 1115 | DOI:10.2140/apde.2016.9.1115
- A new div-curl result. applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian, Journal of Differential Equations, Volume 260 (2016) no. 7, pp. 5678-5725 | DOI:10.1016/j.jde.2015.12.029 | Zbl:1336.35045
- Variational modeling of slip: from crystal plasticity to geological strata, Analysis and computation of microstructure in finite plasticity, Cham: Springer, 2015, pp. 31-62 | DOI:10.1007/978-3-319-18242-1_2 | Zbl:1364.74023
- Global Div-Curl lemma in negative Sobolev spaces, Journal of Functional Analysis, Volume 266 (2014) no. 3, pp. 1150-1169 | DOI:10.1016/j.jfa.2013.11.007 | Zbl:1308.46051
- Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions, Discrete Continuous Dynamical Systems - S, Volume 6 (2013) no. 1, p. 1 | DOI:10.3934/dcdss.2013.6.1
- RELAXATION OF A MODEL IN FINITE PLASTICITY WITH TWO SLIP SYSTEMS, Mathematical Models and Methods in Applied Sciences, Volume 23 (2013) no. 11, p. 2111 | DOI:10.1142/s0218202513500279
- Microstructure and effective behavior of materials, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 93 (2013) no. 1, p. 4 | DOI:10.1002/zamm.201200128
- Asymptotic Behavior of Crystal Plasticity with One Slip System in the Limit of Rigid Elasticity, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 5, p. 2337 | DOI:10.1137/100810320
Cité par 24 documents. Sources : Crossref, zbMATH
Commentaires - Politique