Comptes Rendus
Partial Differential Equations/Mathematical Problems in Mechanics
The div–curl lemma for sequences whose divergence and curl are compact in W1,1
[Le lemme div–rot pour les suites dont la divergence et la boucle sont bornées dans W1,1]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 175-178.

It is shown that ukvk converges weakly to uv if uku weakly in Lp and vkv weakly in Lq with p,q(1,), 1/p+1/q=1, under the additional assumptions that the sequences divuk and curlvk are compact in the dual space of W01, and that ukvk is equi-integrable. The main point is that we only require equi-integrability of the scalar product ukvk and not of the individual sequences.

On montre que ukvk converge faiblement vers uv si uku faiblement dans Lp, vkv faiblement dans Lq, les séquences divuk et rotvk sont compactes dans l'espace dual de W01, et ukvk est équi-intégrable, pour p,q(1,), 1/p+1/q=1. En effet, on n'utilise que l'équi-intégrabilité du produit scalaire ukvk, et non pas celle de chacune des suites.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.11.013

Sergio Conti 1 ; Georg Dolzmann 2 ; Stefan Müller 1, 3

1 Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
2 Universität Regensburg, 93040 Regensburg, Germany
3 Hausdorff Center for Mathematics, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
@article{CRMATH_2011__349_3-4_175_0,
     author = {Sergio Conti and Georg Dolzmann and Stefan M\"uller},
     title = {The div{\textendash}curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {175--178},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.013},
     language = {en},
}
TY  - JOUR
AU  - Sergio Conti
AU  - Georg Dolzmann
AU  - Stefan Müller
TI  - The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 175
EP  - 178
VL  - 349
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2010.11.013
LA  - en
ID  - CRMATH_2011__349_3-4_175_0
ER  - 
%0 Journal Article
%A Sergio Conti
%A Georg Dolzmann
%A Stefan Müller
%T The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$
%J Comptes Rendus. Mathématique
%D 2011
%P 175-178
%V 349
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2010.11.013
%G en
%F CRMATH_2011__349_3-4_175_0
Sergio Conti; Georg Dolzmann; Stefan Müller. The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 175-178. doi : 10.1016/j.crma.2010.11.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.013/

[1] E. Acerbi; N. Fusco Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal., Volume 86 (1984), pp. 125-145

[2] E. Acerbi; N. Fusco An approximation lemma for W1,p functions (J.M. Ball, ed.), Material Instabilities in Continuum Mechanics and Related Mathematical Problems, Oxford Univ. Press, 1988, pp. 1-5

[3] G. Anzellotti Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4), Volume 135 (1983), pp. 293-318

[4] J.M. Ball; F. Murat Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., Volume 107 (1989), pp. 655-663

[5] J.M. Ball; K.-W. Zhang Lower semicontinuity of multiple integrals and the biting lemma, Proc. Roy. Soc. Edinburgh Sect. A, Volume 114 (1990), pp. 367-379

[6] M. Briane; J. Casado-Díaz; F. Murat The div–curl lemma “trente ans après” an extension and an application to the G-convergence of unbounded monotone operators, J. Math. Pures Appl., Volume 91 (2009), pp. 476-494

[7] J.K. Brooks; R.V. Chacon Continuity and compactness of measures, Adv. in Math., Volume 37 (1980), pp. 16-26

[8] R. Coifman; P.-L. Lions; Y. Meyer; S. Semmes Compensated compactness and Hardy spaces, J. Math. Pures Appl., Volume 72 (1993), pp. 247-286

[9] S. Conti, G. Dolzmann, C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, 2010, preprint.

[10] G. Dolzmann; N. Hungerbühler; S. Müller Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side, J. Reine Angew. Math., Volume 520 (2000), pp. 1-35

[11] G. Friesecke; R. James; S. Müller A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506

[12] F.-C. Liu A Luzin type property of Sobolev functions, Indiana Univ. Math. J., Volume 26 (1977), pp. 645-651

[13] S. Müller A sharp version of Zhang's theorem on truncating sequences of gradients, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 4585-4597

[14] F. Murat Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 5 (1978), pp. 489-507

[15] F. Murat Compacité par compensation : condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 8 (1981), pp. 69-102

[16] M. Saadoune; M. Valadier Extraction of a “good” subsequence from a bounded sequence of integrable functions, J. Convex Anal., Volume 2 (1995), pp. 345-357

[17] L. Tartar Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires, in: Journ. d'Anal. non lin., Proc., Besancon, 1977, in: Lect. Notes Math., vol. 665, 1978, pp. 228–241.

[18] L. Tartar, Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot–Watt Symp., vol. 4, in: Edinburgh Res. Notes Math., vol. 39, 1979, pp. 136–212.

[19] L. Tartar The compensated compactness method applied to systems of conservation laws, Oxford, 1982 (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 111, Reidel, Dordrecht (1983), pp. 263-285

[20] K. Zhang A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 19 (1992), pp. 313-326

  • Gui-Qiang G. Chen; Feimin Huang; Tianhong Li; Weiqiang Wang; Yong Wang Global finite-energy solutions of the compressible Euler-Poisson equations for general pressure laws with large initial data of spherical symmetry, Communications in Mathematical Physics, Volume 405 (2024) no. 3, p. 85 (Id/No 77) | DOI:10.1007/s00220-023-04916-1 | Zbl:1536.35258
  • Marc Briane; Juan Casado-Díaz A New Divergence-Curl Result for Measures. Application to the Two-Dimensional ODE’s Flow, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 5, p. 6398 | DOI:10.1137/23m1617539
  • André Guerra; Bogdan Raiţă; Matthew R. I. Schrecker Compensated compactness: continuity in optimal weak topologies, Journal of Functional Analysis, Volume 283 (2022) no. 7, p. 46 (Id/No 109596) | DOI:10.1016/j.jfa.2022.109596 | Zbl:1521.47076
  • Juan Casado-Díaz Homogenization of Elliptic PDE with Varying Coefficients, Optimal Design of Multi-Phase Materials (2022), p. 1 | DOI:10.1007/978-3-030-98191-4_1
  • Martin Kružík; David Melching; Ulisse Stefanelli Quasistatic evolution for dislocation-free finite plasticity, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 26 (2020), p. 23 (Id/No 123) | DOI:10.1051/cocv/2020031 | Zbl:1465.35373
  • Hwi Lee; Qiang Du Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 54 (2020) no. 1, pp. 105-128 | DOI:10.1051/m2an/2019053 | Zbl:1450.76031
  • Matthew R. I. Schrecker; Simon Schulz Inviscid limit of the compressible Navier-Stokes equations for asymptotically isothermal gases, Journal of Differential Equations, Volume 269 (2020) no. 10, pp. 8640-8685 | DOI:10.1016/j.jde.2020.06.018 | Zbl:1442.35310
  • Siran Li A remark on the non-compactness of W2,d-immersions of d-dimensional hypersurfaces, Proceedings of the American Mathematical Society, Volume 148 (2020) no. 5, pp. 2245-2255 | DOI:10.1090/proc/14710 | Zbl:1436.53007
  • Francesco Della Porta A model for the evolution of highly reversible martensitic transformations, M3AS. Mathematical Models Methods in Applied Sciences, Volume 29 (2019) no. 3, pp. 493-530 | DOI:10.1142/s0218202519500143 | Zbl:1428.35591
  • Menglan Liao; Lianzhang Bao; Baisheng Yan On weak closure of some diffusion equations, Proceedings of the American Mathematical Society, Volume 147 (2019) no. 9, pp. 3803-3811 | DOI:10.1090/proc/14610 | Zbl:1439.35499
  • Matthew R. I. Schrecker; Simon Schulz Vanishing viscosity limit of the compressible Navier-Stokes equations with general pressure law, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, pp. 2168-2205 | DOI:10.1137/18m1224362 | Zbl:1419.35167
  • Katarzyna Mazowiecka; Armin Schikorra Fractional div-curl quantities and applications to nonlocal geometric equations, Journal of Functional Analysis, Volume 275 (2018) no. 1, pp. 1-44 | DOI:10.1016/j.jfa.2018.03.016 | Zbl:1440.42114
  • Celia Reina; Landry Fokoua Djodom; Michael Ortiz; Sergio Conti Kinematics of elasto-plasticity: validity and limits of applicability of F=FeFp for general three-dimensional deformations, Journal of the Mechanics and Physics of Solids, Volume 121 (2018), pp. 99-113 | DOI:10.1016/j.jmps.2018.07.006 | Zbl:1479.74016
  • Gui-Qiang G. Chen; Siran Li Global weak rigidity of the Gauss-Codazzi-Ricci equations and isometric immersions of Riemannian manifolds with lower regularity, The Journal of Geometric Analysis, Volume 28 (2018) no. 3, pp. 1957-2007 | DOI:10.1007/s12220-017-9893-1 | Zbl:1407.53040
  • Keith Anguige; Patrick Dondl; Martin Kružík On the existence of minimisers for strain-gradient single-crystal plasticity, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 98 (2018) no. 3, pp. 431-447 | DOI:10.1002/zamm.201700032 | Zbl:1538.49001
  • Celia Reina; Sergio Conti Journal of the Mechanics and Physics of Solids, 107 (2017), pp. 322-342 | DOI:10.1016/j.jmps.2017.07.004 | Zbl:1442.74004
  • Miroslav Bulíček; Lars Diening; Sebastian Schwarzacher Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems, Analysis PDE, Volume 9 (2016) no. 5, p. 1115 | DOI:10.2140/apde.2016.9.1115
  • M. Briane; J. Casado Díaz A new div-curl result. applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian, Journal of Differential Equations, Volume 260 (2016) no. 7, pp. 5678-5725 | DOI:10.1016/j.jde.2015.12.029 | Zbl:1336.35045
  • Sergio Conti; Georg Dolzmann; Carolin Kreisbeck Variational modeling of slip: from crystal plasticity to geological strata, Analysis and computation of microstructure in finite plasticity, Cham: Springer, 2015, pp. 31-62 | DOI:10.1007/978-3-319-18242-1_2 | Zbl:1364.74023
  • Xingfei Xiang Global Div-Curl lemma in negative Sobolev spaces, Journal of Functional Analysis, Volume 266 (2014) no. 3, pp. 1150-1169 | DOI:10.1016/j.jfa.2013.11.007 | Zbl:1308.46051
  • Sergio Conti; Georg Dolzmann; Carolin Kreisbeck Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions, Discrete Continuous Dynamical Systems - S, Volume 6 (2013) no. 1, p. 1 | DOI:10.3934/dcdss.2013.6.1
  • SERGIO CONTI; GEORG DOLZMANN; CAROLIN KREISBECK RELAXATION OF A MODEL IN FINITE PLASTICITY WITH TWO SLIP SYSTEMS, Mathematical Models and Methods in Applied Sciences, Volume 23 (2013) no. 11, p. 2111 | DOI:10.1142/s0218202513500279
  • G. Dolzmann Microstructure and effective behavior of materials, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 93 (2013) no. 1, p. 4 | DOI:10.1002/zamm.201200128
  • Sergio Conti; Georg Dolzmann; Carolin Kreisbeck Asymptotic Behavior of Crystal Plasticity with One Slip System in the Limit of Rigid Elasticity, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 5, p. 2337 | DOI:10.1137/100810320

Cité par 24 documents. Sources : Crossref, zbMATH

Commentaires - Politique