[Comportement dimensionnel de l'entropie et de l'information]
We develop an information-theoretic perspective on some questions in convex geometry, providing for instance a new equipartition property for log-concave probability measures, some Gaussian comparison results for log-concave measures, an entropic formulation of the hyperplane conjecture, and a new reverse entropy power inequality for log-concave measures analogous to V. Milman's reverse Brunn–Minkowski inequality.
Nous développons un point de vue de théorie de l'information sur certains problèmes de géométrie des convexes, fournissant par exemple une nouvelle propriété d'équipartition des mesures de probabilités log-concaves, une inégalité de comparaison gaussienne de l'entropie de mesures log-concaves, une formulation entropique de la conjecture de l'hyperplan, et une nouvelle inégalité inverse concernant l'entropie exponentielle pour des mesures log-concaves, analogue à l'inégalité inverse Brunn–Minkowski due à V. Milman.
Accepté le :
Publié le :
Sergey Bobkov 1 ; Mokshay Madiman 2
@article{CRMATH_2011__349_3-4_201_0, author = {Sergey Bobkov and Mokshay Madiman}, title = {Dimensional behaviour of entropy and information}, journal = {Comptes Rendus. Math\'ematique}, pages = {201--204}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2011.01.008}, language = {en}, }
Sergey Bobkov; Mokshay Madiman. Dimensional behaviour of entropy and information. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 201-204. doi : 10.1016/j.crma.2011.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.008/
[1] Logarithmically concave functions and sections of convex sets in
[2] K.M. Ball, Information decrease along semigroups, Talk given at conference on Banach Spaces and Convex Geometric Analysis, Universität Kiel, Germany, April 2003.
[3] S.G. Bobkov, M. Madiman, Concentration of the information in data with log-concave distributions, Ann. Probab., in press, . | arXiv
[4] The entropy per coordinate of a random vector is highly constrained under convexity conditions (preprint) | arXiv
[5] S.G. Bobkov, M. Madiman, Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures, preprint.
[6] On high-dimensional maximal functions associated to convex bodies, Amer. J. Math., Volume 108 (1986) no. 6, pp. 1467-1476
[7] Information-theoretic inequalities, IEEE Trans. Inform. Theory, Volume 37 (1991) no. 6, pp. 1501-1518
[8] On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal., Volume 16 (2006) no. 6, pp. 1274-1290
[9] Geometry of log-concave functions and measures, Geom. Dedicata, Volume 112 (2005), pp. 169-182
[10] M. Madiman, On the entropy of sums, in: Proc. IEEE Inform. Theory Workshop, Porto, Portugal, 2008, pp. 303–307.
[11] Inégalité de Brunn–Minkowski inverse et applications à la théorie locale des espaces normés, C. R. Acad. Sci. Paris Sér. I Math., Volume 302 (1986) no. 1, pp. 25-28
[12] Isomorphic symmetrizations and geometric inequalities, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 107-131
[13] Entropy point of view on some geometric inequalities, C. R. Acad. Sci. Paris Sér. I Math., Volume 306 (1988) no. 14, pp. 611-615
[14] The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989
[15] Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. Control, Volume 2 (1959), pp. 101-112
- Volumes of subset Minkowski sums and the Lyusternik region, Discrete Computational Geometry, Volume 71 (2024) no. 3, pp. 823-848 | DOI:10.1007/s00454-023-00606-w | Zbl:1548.52008
- On the volume of the Minkowski sum of zonoids, Journal of Functional Analysis, Volume 286 (2024) no. 3, p. 41 (Id/No 110247) | DOI:10.1016/j.jfa.2023.110247 | Zbl:7784459
- Weighted Brunn-Minkowski theory. I: On weighted surface area measures, Journal of Mathematical Analysis and Applications, Volume 529 (2024) no. 2, p. 30 (Id/No 127519) | DOI:10.1016/j.jmaa.2023.127519 | Zbl:1532.52006
- Bernoulli sums and Rényi entropy inequalities, Bernoulli, Volume 29 (2023) no. 2, pp. 1578-1599 | DOI:10.3150/22-bej1511 | Zbl:1510.94075
- Rényi Entropy and Variance Comparison for Symmetric Log-Concave Random Variables, IEEE Transactions on Information Theory, Volume 69 (2023) no. 6, p. 3431 | DOI:10.1109/tit.2023.3243956
- Sharp Moment-Entropy Inequalities and Capacity Bounds for Symmetric Log-Concave Distributions, IEEE Transactions on Information Theory, Volume 67 (2021) no. 1, p. 81 | DOI:10.1109/tit.2020.3032371
- Concentration of information content for convex measures, Electronic Journal of Probability, Volume 25 (2020), p. 22 (Id/No 20) | DOI:10.1214/20-ejp416 | Zbl:1445.60028
- Two remarks on generalized entropy power inequalities, Geometric aspects of functional analysis. Israel seminar (GAFA) 2017–2019. Volume II, Cham: Springer, 2020, pp. 169-185 | DOI:10.1007/978-3-030-46762-3_7 | Zbl:1453.60058
- , 2019 IEEE International Symposium on Information Theory (ISIT) (2019), p. 1837 | DOI:10.1109/isit.2019.8849535
- Majorization and Rényi entropy inequalities via Sperner theory, Discrete Mathematics, Volume 342 (2019) no. 10, pp. 2911-2923 | DOI:10.1016/j.disc.2019.03.002 | Zbl:1478.60028
- Combinatorial Entropy Power Inequalities: A Preliminary Study of the Stam Region, IEEE Transactions on Information Theory, Volume 65 (2019) no. 3, p. 1375 | DOI:10.1109/tit.2018.2854545
- The convexification effect of Minkowski summation, EMS Surveys in Mathematical Sciences, Volume 5 (2018) no. 1-2, pp. 1-64 | DOI:10.4171/emss/26 | Zbl:1425.60018
- Entropy Bounds on Abelian Groups and the Ruzsa Divergence, IEEE Transactions on Information Theory, Volume 64 (2018) no. 1, p. 77 | DOI:10.1109/tit.2016.2620470
- Forward and Reverse Entropy Power Inequalities in Convex Geometry, Convexity and Concentration, Volume 161 (2017), p. 427 | DOI:10.1007/978-1-4939-7005-6_14
- Entropies of Weighted Sums in Cyclic Groups and an Application to Polar Codes, Entropy, Volume 19 (2017) no. 9, p. 235 | DOI:10.3390/e19090235
- , 2016 IEEE International Symposium on Information Theory (ISIT) (2016), p. 2284 | DOI:10.1109/isit.2016.7541706
- Optimal concentration of information content for log-concave densities, High dimensional probability VII. The Cargèse volume. Selected papers based on the presentations at the 7th conference, HDP VII, Institut d'Études Scientifiques de Cargèse, IESC, Fance, May 26–30, 2014, Basel: Birkhäuser/Springer, 2016, pp. 45-60 | DOI:10.1007/978-3-319-40519-3_3 | Zbl:1358.60036
- On Rényi Entropy Power Inequalities, IEEE Transactions on Information Theory, Volume 62 (2016) no. 12, p. 6800 | DOI:10.1109/tit.2016.2616135
- A Strengthened Entropy Power Inequality for Log-Concave Densities, IEEE Transactions on Information Theory, Volume 61 (2015) no. 12, p. 6550 | DOI:10.1109/tit.2015.2495302
- Beyond the Entropy Power Inequality, via Rearrangements, IEEE Transactions on Information Theory, Volume 60 (2014) no. 9, p. 5116 | DOI:10.1109/tit.2014.2338852
- , 2013 IEEE Information Theory Workshop (ITW) (2013), p. 1 | DOI:10.1109/itw.2013.6691279
- Affine Moments of a Random Vector, IEEE Transactions on Information Theory, Volume 59 (2013) no. 9, p. 5592 | DOI:10.1109/tit.2013.2258457
- On the problem of reversibility of the entropy power inequality, Limit theorems in probability, statistics and number theory. In honor of Friedrich Götze on the occasion of his 60th birthday. Selected papers based on the presentations at the workshop, Bielefeld, Germany, August 4–6, 2011, Berlin: Springer, 2013, pp. 61-74 | DOI:10.1007/978-3-642-36068-8_4 | Zbl:1304.60029
- , 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2012), p. 482 | DOI:10.1109/allerton.2012.6483257
- Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures, Journal of Functional Analysis, Volume 262 (2012) no. 7, pp. 3309-3339 | DOI:10.1016/j.jfa.2012.01.011 | Zbl:1246.52012
- Entropy and set cardinality inequalities for partition-determined functions, Random Structures Algorithms, Volume 40 (2012) no. 4, pp. 399-424 | DOI:10.1002/rsa.20385 | Zbl:1244.05024
Cité par 26 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier