Comptes Rendus
Functional Analysis/Probability Theory
Dimensional behaviour of entropy and information
[Comportement dimensionnel de l'entropie et de l'information]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 201-204.

Nous développons un point de vue de théorie de l'information sur certains problèmes de géométrie des convexes, fournissant par exemple une nouvelle propriété d'équipartition des mesures de probabilités log-concaves, une inégalité de comparaison gaussienne de l'entropie de mesures log-concaves, une formulation entropique de la conjecture de l'hyperplan, et une nouvelle inégalité inverse concernant l'entropie exponentielle pour des mesures log-concaves, analogue à l'inégalité inverse Brunn–Minkowski due à V. Milman.

We develop an information-theoretic perspective on some questions in convex geometry, providing for instance a new equipartition property for log-concave probability measures, some Gaussian comparison results for log-concave measures, an entropic formulation of the hyperplane conjecture, and a new reverse entropy power inequality for log-concave measures analogous to V. Milman's reverse Brunn–Minkowski inequality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.01.008
Sergey Bobkov 1 ; Mokshay Madiman 2

1 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
2 Department of Statistics, Yale University, New Haven, CT 06511, USA
@article{CRMATH_2011__349_3-4_201_0,
     author = {Sergey Bobkov and Mokshay Madiman},
     title = {Dimensional behaviour of entropy and information},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {201--204},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2011.01.008},
     language = {en},
}
TY  - JOUR
AU  - Sergey Bobkov
AU  - Mokshay Madiman
TI  - Dimensional behaviour of entropy and information
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 201
EP  - 204
VL  - 349
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2011.01.008
LA  - en
ID  - CRMATH_2011__349_3-4_201_0
ER  - 
%0 Journal Article
%A Sergey Bobkov
%A Mokshay Madiman
%T Dimensional behaviour of entropy and information
%J Comptes Rendus. Mathématique
%D 2011
%P 201-204
%V 349
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2011.01.008
%G en
%F CRMATH_2011__349_3-4_201_0
Sergey Bobkov; Mokshay Madiman. Dimensional behaviour of entropy and information. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 201-204. doi : 10.1016/j.crma.2011.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.008/

[1] K. Ball Logarithmically concave functions and sections of convex sets in Rn, Studia Math., Volume 88 (1988) no. 1, pp. 69-84

[2] K.M. Ball, Information decrease along semigroups, Talk given at conference on Banach Spaces and Convex Geometric Analysis, Universität Kiel, Germany, April 2003.

[3] S.G. Bobkov, M. Madiman, Concentration of the information in data with log-concave distributions, Ann. Probab., in press, . | arXiv

[4] S.G. Bobkov; M. Madiman The entropy per coordinate of a random vector is highly constrained under convexity conditions (preprint) | arXiv

[5] S.G. Bobkov, M. Madiman, Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures, preprint.

[6] J. Bourgain On high-dimensional maximal functions associated to convex bodies, Amer. J. Math., Volume 108 (1986) no. 6, pp. 1467-1476

[7] A. Dembo; T. Cover; J. Thomas Information-theoretic inequalities, IEEE Trans. Inform. Theory, Volume 37 (1991) no. 6, pp. 1501-1518

[8] B. Klartag On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal., Volume 16 (2006) no. 6, pp. 1274-1290

[9] B. Klartag; V.D. Milman Geometry of log-concave functions and measures, Geom. Dedicata, Volume 112 (2005), pp. 169-182

[10] M. Madiman, On the entropy of sums, in: Proc. IEEE Inform. Theory Workshop, Porto, Portugal, 2008, pp. 303–307.

[11] V.D. Milman Inégalité de Brunn–Minkowski inverse et applications à la théorie locale des espaces normés, C. R. Acad. Sci. Paris Sér. I Math., Volume 302 (1986) no. 1, pp. 25-28

[12] V.D. Milman Isomorphic symmetrizations and geometric inequalities, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 107-131

[13] V.D. Milman Entropy point of view on some geometric inequalities, C. R. Acad. Sci. Paris Sér. I Math., Volume 306 (1988) no. 14, pp. 611-615

[14] G. Pisier The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989

[15] A. Stam Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. Control, Volume 2 (1959), pp. 101-112

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Do Minkowski averages get progressively more convex?

Matthieu Fradelizi; Mokshay Madiman; Arnaud Marsiglietti; ...

C. R. Math (2016)


Uniform tail-decay of Lipschitz functions implies Cheeger's isoperimetric inequality under convexity assumptions

Emanuel Milman

C. R. Math (2008)


A reduction of the slicing problem to finite volume ratio bodies

Jean Bourgain; Bo'az Klartag; Vitali Milman

C. R. Math (2003)