Comptes Rendus
Functional Analysis/Probability Theory
Dimensional behaviour of entropy and information
[Comportement dimensionnel de l'entropie et de l'information]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 201-204.

We develop an information-theoretic perspective on some questions in convex geometry, providing for instance a new equipartition property for log-concave probability measures, some Gaussian comparison results for log-concave measures, an entropic formulation of the hyperplane conjecture, and a new reverse entropy power inequality for log-concave measures analogous to V. Milman's reverse Brunn–Minkowski inequality.

Nous développons un point de vue de théorie de l'information sur certains problèmes de géométrie des convexes, fournissant par exemple une nouvelle propriété d'équipartition des mesures de probabilités log-concaves, une inégalité de comparaison gaussienne de l'entropie de mesures log-concaves, une formulation entropique de la conjecture de l'hyperplan, et une nouvelle inégalité inverse concernant l'entropie exponentielle pour des mesures log-concaves, analogue à l'inégalité inverse Brunn–Minkowski due à V. Milman.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.01.008

Sergey Bobkov 1 ; Mokshay Madiman 2

1 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
2 Department of Statistics, Yale University, New Haven, CT 06511, USA
@article{CRMATH_2011__349_3-4_201_0,
     author = {Sergey Bobkov and Mokshay Madiman},
     title = {Dimensional behaviour of entropy and information},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {201--204},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2011.01.008},
     language = {en},
}
TY  - JOUR
AU  - Sergey Bobkov
AU  - Mokshay Madiman
TI  - Dimensional behaviour of entropy and information
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 201
EP  - 204
VL  - 349
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2011.01.008
LA  - en
ID  - CRMATH_2011__349_3-4_201_0
ER  - 
%0 Journal Article
%A Sergey Bobkov
%A Mokshay Madiman
%T Dimensional behaviour of entropy and information
%J Comptes Rendus. Mathématique
%D 2011
%P 201-204
%V 349
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2011.01.008
%G en
%F CRMATH_2011__349_3-4_201_0
Sergey Bobkov; Mokshay Madiman. Dimensional behaviour of entropy and information. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 201-204. doi : 10.1016/j.crma.2011.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.008/

[1] K. Ball Logarithmically concave functions and sections of convex sets in Rn, Studia Math., Volume 88 (1988) no. 1, pp. 69-84

[2] K.M. Ball, Information decrease along semigroups, Talk given at conference on Banach Spaces and Convex Geometric Analysis, Universität Kiel, Germany, April 2003.

[3] S.G. Bobkov, M. Madiman, Concentration of the information in data with log-concave distributions, Ann. Probab., in press, . | arXiv

[4] S.G. Bobkov; M. Madiman The entropy per coordinate of a random vector is highly constrained under convexity conditions (preprint) | arXiv

[5] S.G. Bobkov, M. Madiman, Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures, preprint.

[6] J. Bourgain On high-dimensional maximal functions associated to convex bodies, Amer. J. Math., Volume 108 (1986) no. 6, pp. 1467-1476

[7] A. Dembo; T. Cover; J. Thomas Information-theoretic inequalities, IEEE Trans. Inform. Theory, Volume 37 (1991) no. 6, pp. 1501-1518

[8] B. Klartag On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal., Volume 16 (2006) no. 6, pp. 1274-1290

[9] B. Klartag; V.D. Milman Geometry of log-concave functions and measures, Geom. Dedicata, Volume 112 (2005), pp. 169-182

[10] M. Madiman, On the entropy of sums, in: Proc. IEEE Inform. Theory Workshop, Porto, Portugal, 2008, pp. 303–307.

[11] V.D. Milman Inégalité de Brunn–Minkowski inverse et applications à la théorie locale des espaces normés, C. R. Acad. Sci. Paris Sér. I Math., Volume 302 (1986) no. 1, pp. 25-28

[12] V.D. Milman Isomorphic symmetrizations and geometric inequalities, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 107-131

[13] V.D. Milman Entropy point of view on some geometric inequalities, C. R. Acad. Sci. Paris Sér. I Math., Volume 306 (1988) no. 14, pp. 611-615

[14] G. Pisier The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989

[15] A. Stam Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. Control, Volume 2 (1959), pp. 101-112

  • Franck Barthe; Mokshay Madiman Volumes of subset Minkowski sums and the Lyusternik region, Discrete Computational Geometry, Volume 71 (2024) no. 3, pp. 823-848 | DOI:10.1007/s00454-023-00606-w | Zbl:1548.52008
  • Matthieu Fradelizi; Mokshay Madiman; Mathieu Meyer; Artem Zvavitch On the volume of the Minkowski sum of zonoids, Journal of Functional Analysis, Volume 286 (2024) no. 3, p. 41 (Id/No 110247) | DOI:10.1016/j.jfa.2023.110247 | Zbl:7784459
  • Matthieu Fradelizi; Dylan Langharst; Mokshay Madiman; Artem Zvavitch Weighted Brunn-Minkowski theory. I: On weighted surface area measures, Journal of Mathematical Analysis and Applications, Volume 529 (2024) no. 2, p. 30 (Id/No 127519) | DOI:10.1016/j.jmaa.2023.127519 | Zbl:1532.52006
  • Mokshay Madiman; James Melbourne; Cyril Roberto Bernoulli sums and Rényi entropy inequalities, Bernoulli, Volume 29 (2023) no. 2, pp. 1578-1599 | DOI:10.3150/22-bej1511 | Zbl:1510.94075
  • Maciej Białobrzeski; Piotr Nayar Rényi Entropy and Variance Comparison for Symmetric Log-Concave Random Variables, IEEE Transactions on Information Theory, Volume 69 (2023) no. 6, p. 3431 | DOI:10.1109/tit.2023.3243956
  • Mokshay Madiman; Piotr Nayar; Tomasz Tkocz Sharp Moment-Entropy Inequalities and Capacity Bounds for Symmetric Log-Concave Distributions, IEEE Transactions on Information Theory, Volume 67 (2021) no. 1, p. 81 | DOI:10.1109/tit.2020.3032371
  • Matthieu Fradelizi; Jiange Li; Mokshay Madiman Concentration of information content for convex measures, Electronic Journal of Probability, Volume 25 (2020), p. 22 (Id/No 20) | DOI:10.1214/20-ejp416 | Zbl:1445.60028
  • Mokshay Madiman; Piotr Nayar; Tomasz Tkocz Two remarks on generalized entropy power inequalities, Geometric aspects of functional analysis. Israel seminar (GAFA) 2017–2019. Volume II, Cham: Springer, 2020, pp. 169-185 | DOI:10.1007/978-3-030-46762-3_7 | Zbl:1453.60058
  • Mokshay Madiman; Piotr Nayar; Tomasz Tkocz, 2019 IEEE International Symposium on Information Theory (ISIT) (2019), p. 1837 | DOI:10.1109/isit.2019.8849535
  • Mokshay Madiman; Liyao Wang; Jae Oh Woo Majorization and Rényi entropy inequalities via Sperner theory, Discrete Mathematics, Volume 342 (2019) no. 10, pp. 2911-2923 | DOI:10.1016/j.disc.2019.03.002 | Zbl:1478.60028
  • Mokshay Madiman; Farhad Ghassemi Combinatorial Entropy Power Inequalities: A Preliminary Study of the Stam Region, IEEE Transactions on Information Theory, Volume 65 (2019) no. 3, p. 1375 | DOI:10.1109/tit.2018.2854545
  • Matthieu Fradelizi; Mokshay Madiman; Arnaud Marsiglietti; Artem Zvavitch The convexification effect of Minkowski summation, EMS Surveys in Mathematical Sciences, Volume 5 (2018) no. 1-2, pp. 1-64 | DOI:10.4171/emss/26 | Zbl:1425.60018
  • Mokshay Madiman; Ioannis Kontoyiannis Entropy Bounds on Abelian Groups and the Ruzsa Divergence, IEEE Transactions on Information Theory, Volume 64 (2018) no. 1, p. 77 | DOI:10.1109/tit.2016.2620470
  • Mokshay Madiman; James Melbourne; Peng Xu Forward and Reverse Entropy Power Inequalities in Convex Geometry, Convexity and Concentration, Volume 161 (2017), p. 427 | DOI:10.1007/978-1-4939-7005-6_14
  • Emmanuel Abbe; Jiange Li; Mokshay Madiman Entropies of Weighted Sums in Cyclic Groups and an Application to Polar Codes, Entropy, Volume 19 (2017) no. 9, p. 235 | DOI:10.3390/e19090235
  • Peng Xu; James Melbourne; Mokshay Madiman, 2016 IEEE International Symposium on Information Theory (ISIT) (2016), p. 2284 | DOI:10.1109/isit.2016.7541706
  • Matthieu Fradelizi; Mokshay Madiman; Liyao Wang Optimal concentration of information content for log-concave densities, High dimensional probability VII. The Cargèse volume. Selected papers based on the presentations at the 7th conference, HDP VII, Institut d'Études Scientifiques de Cargèse, IESC, Fance, May 26–30, 2014, Basel: Birkhäuser/Springer, 2016, pp. 45-60 | DOI:10.1007/978-3-319-40519-3_3 | Zbl:1358.60036
  • Eshed Ram; Igal Sason On Rényi Entropy Power Inequalities, IEEE Transactions on Information Theory, Volume 62 (2016) no. 12, p. 6800 | DOI:10.1109/tit.2016.2616135
  • Giuseppe Toscani A Strengthened Entropy Power Inequality for Log-Concave Densities, IEEE Transactions on Information Theory, Volume 61 (2015) no. 12, p. 6550 | DOI:10.1109/tit.2015.2495302
  • Liyao Wang; Mokshay Madiman Beyond the Entropy Power Inequality, via Rearrangements, IEEE Transactions on Information Theory, Volume 60 (2014) no. 9, p. 5116 | DOI:10.1109/tit.2014.2338852
  • Ioannis Kontoyiannis; Mokshay Madiman, 2013 IEEE Information Theory Workshop (ITW) (2013), p. 1 | DOI:10.1109/itw.2013.6691279
  • Erwin Lutwak; Songjun Lv; Deane Yang; Gaoyong Zhang Affine Moments of a Random Vector, IEEE Transactions on Information Theory, Volume 59 (2013) no. 9, p. 5592 | DOI:10.1109/tit.2013.2258457
  • Sergey G. Bobkov; Mokshay M. Madiman On the problem of reversibility of the entropy power inequality, Limit theorems in probability, statistics and number theory. In honor of Friedrich Götze on the occasion of his 60th birthday. Selected papers based on the presentations at the workshop, Bielefeld, Germany, August 4–6, 2011, Berlin: Springer, 2013, pp. 61-74 | DOI:10.1007/978-3-642-36068-8_4 | Zbl:1304.60029
  • Sergey Bobkov; Mokshay Madiman, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2012), p. 482 | DOI:10.1109/allerton.2012.6483257
  • Sergey Bobkov; Mokshay Madiman Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures, Journal of Functional Analysis, Volume 262 (2012) no. 7, pp. 3309-3339 | DOI:10.1016/j.jfa.2012.01.011 | Zbl:1246.52012
  • Mokshay Madiman; Adam W. Marcus; Prasad Tetali Entropy and set cardinality inequalities for partition-determined functions, Random Structures Algorithms, Volume 40 (2012) no. 4, pp. 399-424 | DOI:10.1002/rsa.20385 | Zbl:1244.05024

Cité par 26 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: