We develop an information-theoretic perspective on some questions in convex geometry, providing for instance a new equipartition property for log-concave probability measures, some Gaussian comparison results for log-concave measures, an entropic formulation of the hyperplane conjecture, and a new reverse entropy power inequality for log-concave measures analogous to V. Milman's reverse Brunn–Minkowski inequality.
Nous développons un point de vue de théorie de l'information sur certains problèmes de géométrie des convexes, fournissant par exemple une nouvelle propriété d'équipartition des mesures de probabilités log-concaves, une inégalité de comparaison gaussienne de l'entropie de mesures log-concaves, une formulation entropique de la conjecture de l'hyperplan, et une nouvelle inégalité inverse concernant l'entropie exponentielle pour des mesures log-concaves, analogue à l'inégalité inverse Brunn–Minkowski due à V. Milman.
Accepted:
Published online:
Sergey Bobkov 1; Mokshay Madiman 2
@article{CRMATH_2011__349_3-4_201_0, author = {Sergey Bobkov and Mokshay Madiman}, title = {Dimensional behaviour of entropy and information}, journal = {Comptes Rendus. Math\'ematique}, pages = {201--204}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2011.01.008}, language = {en}, }
Sergey Bobkov; Mokshay Madiman. Dimensional behaviour of entropy and information. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 201-204. doi : 10.1016/j.crma.2011.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.008/
[1] Logarithmically concave functions and sections of convex sets in , Studia Math., Volume 88 (1988) no. 1, pp. 69-84
[2] K.M. Ball, Information decrease along semigroups, Talk given at conference on Banach Spaces and Convex Geometric Analysis, Universität Kiel, Germany, April 2003.
[3] S.G. Bobkov, M. Madiman, Concentration of the information in data with log-concave distributions, Ann. Probab., in press, . | arXiv
[4] The entropy per coordinate of a random vector is highly constrained under convexity conditions (preprint) | arXiv
[5] S.G. Bobkov, M. Madiman, Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures, preprint.
[6] On high-dimensional maximal functions associated to convex bodies, Amer. J. Math., Volume 108 (1986) no. 6, pp. 1467-1476
[7] Information-theoretic inequalities, IEEE Trans. Inform. Theory, Volume 37 (1991) no. 6, pp. 1501-1518
[8] On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal., Volume 16 (2006) no. 6, pp. 1274-1290
[9] Geometry of log-concave functions and measures, Geom. Dedicata, Volume 112 (2005), pp. 169-182
[10] M. Madiman, On the entropy of sums, in: Proc. IEEE Inform. Theory Workshop, Porto, Portugal, 2008, pp. 303–307.
[11] Inégalité de Brunn–Minkowski inverse et applications à la théorie locale des espaces normés, C. R. Acad. Sci. Paris Sér. I Math., Volume 302 (1986) no. 1, pp. 25-28
[12] Isomorphic symmetrizations and geometric inequalities, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 107-131
[13] Entropy point of view on some geometric inequalities, C. R. Acad. Sci. Paris Sér. I Math., Volume 306 (1988) no. 14, pp. 611-615
[14] The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989
[15] Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. Control, Volume 2 (1959), pp. 101-112
Cited by Sources:
Comments - Policy