Comptes Rendus
Functional Analysis/Probability Theory
Dimensional behaviour of entropy and information
Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 201-204.

We develop an information-theoretic perspective on some questions in convex geometry, providing for instance a new equipartition property for log-concave probability measures, some Gaussian comparison results for log-concave measures, an entropic formulation of the hyperplane conjecture, and a new reverse entropy power inequality for log-concave measures analogous to V. Milman's reverse Brunn–Minkowski inequality.

Nous développons un point de vue de théorie de l'information sur certains problèmes de géométrie des convexes, fournissant par exemple une nouvelle propriété d'équipartition des mesures de probabilités log-concaves, une inégalité de comparaison gaussienne de l'entropie de mesures log-concaves, une formulation entropique de la conjecture de l'hyperplan, et une nouvelle inégalité inverse concernant l'entropie exponentielle pour des mesures log-concaves, analogue à l'inégalité inverse Brunn–Minkowski due à V. Milman.

Published online:
DOI: 10.1016/j.crma.2011.01.008

Sergey Bobkov 1; Mokshay Madiman 2

1 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
2 Department of Statistics, Yale University, New Haven, CT 06511, USA
     author = {Sergey Bobkov and Mokshay Madiman},
     title = {Dimensional behaviour of entropy and information},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {201--204},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2011.01.008},
     language = {en},
AU  - Sergey Bobkov
AU  - Mokshay Madiman
TI  - Dimensional behaviour of entropy and information
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 201
EP  - 204
VL  - 349
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2011.01.008
LA  - en
ID  - CRMATH_2011__349_3-4_201_0
ER  - 
%0 Journal Article
%A Sergey Bobkov
%A Mokshay Madiman
%T Dimensional behaviour of entropy and information
%J Comptes Rendus. Mathématique
%D 2011
%P 201-204
%V 349
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2011.01.008
%G en
%F CRMATH_2011__349_3-4_201_0
Sergey Bobkov; Mokshay Madiman. Dimensional behaviour of entropy and information. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 201-204. doi : 10.1016/j.crma.2011.01.008.

[1] K. Ball Logarithmically concave functions and sections of convex sets in Rn, Studia Math., Volume 88 (1988) no. 1, pp. 69-84

[2] K.M. Ball, Information decrease along semigroups, Talk given at conference on Banach Spaces and Convex Geometric Analysis, Universität Kiel, Germany, April 2003.

[3] S.G. Bobkov, M. Madiman, Concentration of the information in data with log-concave distributions, Ann. Probab., in press, . | arXiv

[4] S.G. Bobkov; M. Madiman The entropy per coordinate of a random vector is highly constrained under convexity conditions (preprint) | arXiv

[5] S.G. Bobkov, M. Madiman, Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures, preprint.

[6] J. Bourgain On high-dimensional maximal functions associated to convex bodies, Amer. J. Math., Volume 108 (1986) no. 6, pp. 1467-1476

[7] A. Dembo; T. Cover; J. Thomas Information-theoretic inequalities, IEEE Trans. Inform. Theory, Volume 37 (1991) no. 6, pp. 1501-1518

[8] B. Klartag On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal., Volume 16 (2006) no. 6, pp. 1274-1290

[9] B. Klartag; V.D. Milman Geometry of log-concave functions and measures, Geom. Dedicata, Volume 112 (2005), pp. 169-182

[10] M. Madiman, On the entropy of sums, in: Proc. IEEE Inform. Theory Workshop, Porto, Portugal, 2008, pp. 303–307.

[11] V.D. Milman Inégalité de Brunn–Minkowski inverse et applications à la théorie locale des espaces normés, C. R. Acad. Sci. Paris Sér. I Math., Volume 302 (1986) no. 1, pp. 25-28

[12] V.D. Milman Isomorphic symmetrizations and geometric inequalities, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 107-131

[13] V.D. Milman Entropy point of view on some geometric inequalities, C. R. Acad. Sci. Paris Sér. I Math., Volume 306 (1988) no. 14, pp. 611-615

[14] G. Pisier The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989

[15] A. Stam Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. Control, Volume 2 (1959), pp. 101-112

Cited by Sources:

Comments - Policy