[Une inégalité de Korn non linéaire et son relation à l'existence de minimiseurs en elasticité non linéaire]
Nous établissons une inégalité de Korn non linéaire avec conditions au bord montrant que la distance dans
We establish a nonlinear Korn inequality with boundary conditions showing that the
Accepté le :
Publié le :
Cristinel Mardare 1
@article{CRMATH_2011__349_3-4_229_0, author = {Cristinel Mardare}, title = {A nonlinear {Korn} inequality with boundary conditions and its relation to the existence of minimizers in nonlinear elasticity}, journal = {Comptes Rendus. Math\'ematique}, pages = {229--232}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2011.01.011}, language = {en}, }
TY - JOUR AU - Cristinel Mardare TI - A nonlinear Korn inequality with boundary conditions and its relation to the existence of minimizers in nonlinear elasticity JO - Comptes Rendus. Mathématique PY - 2011 SP - 229 EP - 232 VL - 349 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2011.01.011 LA - en ID - CRMATH_2011__349_3-4_229_0 ER -
%0 Journal Article %A Cristinel Mardare %T A nonlinear Korn inequality with boundary conditions and its relation to the existence of minimizers in nonlinear elasticity %J Comptes Rendus. Mathématique %D 2011 %P 229-232 %V 349 %N 3-4 %I Elsevier %R 10.1016/j.crma.2011.01.011 %G en %F CRMATH_2011__349_3-4_229_0
Cristinel Mardare. A nonlinear Korn inequality with boundary conditions and its relation to the existence of minimizers in nonlinear elasticity. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 229-232. doi : 10.1016/j.crma.2011.01.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.011/
[1] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1977), pp. 337-403
[2] D. Blanchard, Personal communication.
[3] Mathematical Elasticity, vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988
[4] Continuity of a deformation in
[5] Existence theorems in intrinsic nonlinear elasticity, J. Math. Pures Appl., Volume 94 (2010), pp. 229-243
[6] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[7] Critical points in the energy of hyperelastic materials, RAIRO Model. Math. Anal. Num., Volume 24 (1990), pp. 103-132
[8] Energy minimizers in nonlinear elastostatics and the implicit function theorem, Arch. Ration. Mech. Anal., Volume 114 (1991), pp. 95-117
- Mixed Kirchhoff stress-displacement-pressure formulations for incompressible hyperelasticity, Computer Methods in Applied Mechanics and Engineering, Volume 374 (2021), p. 24 (Id/No 113562) | DOI:10.1016/j.cma.2020.113562 | Zbl:1506.74050
- A nonlinear Korn inequality based on the Green-Saint Venant strain tensor, Journal of Elasticity, Volume 126 (2017) no. 1, pp. 129-134 | DOI:10.1007/s10659-016-9582-5 | Zbl:1362.74011
- A hybridizable discontinuous Galerkin formulation for non-linear elasticity, Computer Methods in Applied Mechanics and Engineering, Volume 283 (2015), pp. 303-329 | DOI:10.1016/j.cma.2014.08.012 | Zbl:1423.74895
- Poincaré meets Korn via Maxwell: extending Korn's first inequality to incompatible tensor fields, Journal of Differential Equations, Volume 258 (2015) no. 4, pp. 1267-1302 | DOI:10.1016/j.jde.2014.10.019 | Zbl:1310.35012
Cité par 4 documents. Sources : zbMATH
Commentaires - Politique