[A family of quasi-rational hypersurfaces with bijective Nash map]
The Nash problem on arcs for normal surface singularities states that there are as many arc families on a germ of a singular surface as there are essential components of a desingularisation of . It is known that this problem can be reduced to the study of quasi-rational singularities. In this Note we give a positive answer to the Nash problem for a family of non-rational quasi-rational hypersurfaces. This same method applies to give a positive answer in some other cases, for instance, the and type singularities, and gives simple proofs of known cases.
Le problème des arcs de Nash pour les singularités normales de surfaces affirme quʼil y aurait autant de familles dʼarcs sur un germe de surface singulier que de composantes essentielles dʼune désingularisation de . Il est connu que ce problème se réduit à étudier les singularités quasi-rationnelles. Lʼobjet de cette Note est de répondre positivement au problème de Nash pour une famille dʼhypersurfaces quasi-rationnelles non rationnelles. La même méthode sʼapplique pour répondre positivement dans dʼautres cas, par exemple, les singularités de type et , et pour fournir des preuves simples de cas connus.
Accepted:
Published online:
Maximiliano Leyton-Alvarez 1
@article{CRMATH_2011__349_5-6_323_0, author = {Maximiliano Leyton-Alvarez}, title = {Une famille d'hypersurfaces quasi-rationnelles avec application de {Nash} bijective}, journal = {Comptes Rendus. Math\'ematique}, pages = {323--326}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.025}, language = {fr}, }
Maximiliano Leyton-Alvarez. Une famille dʼhypersurfaces quasi-rationnelles avec application de Nash bijective. Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 323-326. doi : 10.1016/j.crma.2011.01.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.025/
[1] Système générateur minimal, diviseurs essentiels et G-désingularisations de variétés toriques, Tohoku Math. J. Ser., Volume 2 (1995) no. 47, pp. 125-149
[2] Clusters of infinitely near points, Math. Ann., Volume 306 (1996), pp. 169-194
[3] Rational curves and rational singularities, Math. Z., Volume 244 (2003), pp. 549-575
[4] Modèles canoniques plongés I, Kodai Math. J., Volume 14 (1991), pp. 194-209
[5] Jet schemes, arc spaces and the Nash problem, C. R. Math. Acad. Sci. Soc. R. Can., Volume 29 (2007), pp. 1-21
[6] Some numerical criteria for the Nash problem on arcs for surfaces, Nagoya Math. J., Volume 191 (2008), pp. 1-19
[7] A class of non-rational surface singularities with bijective Nash map, Bull. Soc. Math. France, Volume 134 (2006) no. 3, pp. 383-394
[8] A curve selection lemma in spaces of arcs and the image of the Nash map, Compos. Math., Volume 142 (2006), pp. 119-130
Cited by Sources:
Comments - Policy