Consider the functions defined as , where is a Laguerre function and is a hyperbolic lattice. We prove that, if the wavelet system is a frame of , then .
Soit le fonction de la forme , ou est une fonction de Laguerre et est une reseau hyperbolique. Notre resultat principal dit que, si lʼ ensemble dʼondelettes est un frame pour , alors, .
Accepted:
Published online:
Luis Daniel Abreu 1
@article{CRMATH_2011__349_5-6_255_0,
author = {Luis Daniel Abreu},
title = {Wavelet frames with {Laguerre} functions},
journal = {Comptes Rendus. Math\'ematique},
pages = {255--258},
year = {2011},
publisher = {Elsevier},
volume = {349},
number = {5-6},
doi = {10.1016/j.crma.2011.02.013},
language = {en},
}
Luis Daniel Abreu. Wavelet frames with Laguerre functions. Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 255-258. doi: 10.1016/j.crma.2011.02.013
[1] Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions, Appl. Comput. Harmon. Anal., Volume 29 (2010) no. 3, pp. 287-302
[2] L.D. Abreu, Beurling type density theorems for polyanalytic functions in the unit disc, in preparation.
[3] L.D. Abreu, Super-wavelets versus poly-Bergman spaces, in preparation.
[4] Model space results for the Gabor and wavelet transforms, IEEE Trans. Inform. Theory, Volume 55 (2009) no. 5, pp. 2250-2259
[5] Gabor frames with Hermite functions, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 157-162
[6] Gabor (super) frames with Hermite functions, Math. Ann., Volume 345 (2009) no. 2, pp. 267-286
[7] Density of weighted wavelet frames, J. Geom. Anal., Volume 13 (2003) no. 3, pp. 479-493
[8] Regular sets of sampling and interpolation for weighted Bergman spaces, Proc. Amer. Math. Soc., Volume 117 (1993) no. 1, pp. 213-220
[9] Beurling type density theorems in the unit disc, Invent. Math., Volume 113 (1993), pp. 21-39
[10] Density of wavelet frames, Appl. Comput. Harmon. Anal., Volume 22 (2007) no. 2, pp. 264-272
Cited by Sources:
☆ This research was partially supported by CMUC/FCT and FCT project “Frame Design” PTDC/MAT/114394/2009, POCI 2010 and FSE.
Comments - Policy
