Comptes Rendus
Partial Differential Equations
Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation
Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 553-557.

This Note investigates the properties of the traveling waves solutions of the nonlocal Fisher equation. The existence of such solutions has been proved recently in Berestycki et al. (2009) [3] but their asymptotic behavior was still unclear. We use here a new numerical approximation of these traveling waves which shows that some traveling waves connect the two homogeneous steady states 0 and 1, which is a striking fact since 0 is dynamically unstable and 1 is unstable in the sense of Turing.

Nous étudions dans cette Note les propriétés des solutions de type ondes progressives pour lʼéquation de Fisher non-locale. Lʼexistence de telles solutions a été prouvée récemment dans Berestycki et al. (2009) [3] mais leur comportement asymptotique était encore mal compris. Nous développons ici une nouvelle méthode dʼapproximation numérique montrant que certaines ondes progressives connectent les deux états dʼéquilibre homogènes 0 et 1, ce qui est surprenant puisque 0 est dynamiquement instable et 1 est instable au sens de Turing.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.03.008

Grégoire Nadin 1; Benoît Perthame 1, 2; Min Tang 1, 2

1 UPMC, CNRS UMR 7598, laboratoire Jacques-Louis-Lions, 4, place Jussieu, 75005 Paris, France
2 INRIA Paris-Rocquencourt, équipe BANG, domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay, France
@article{CRMATH_2011__349_9-10_553_0,
     author = {Gr\'egoire Nadin and Beno{\^\i}t Perthame and Min Tang},
     title = {Can a traveling wave connect two unstable states? {The} case of the nonlocal {Fisher} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {553--557},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.008},
     language = {en},
}
TY  - JOUR
AU  - Grégoire Nadin
AU  - Benoît Perthame
AU  - Min Tang
TI  - Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 553
EP  - 557
VL  - 349
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2011.03.008
LA  - en
ID  - CRMATH_2011__349_9-10_553_0
ER  - 
%0 Journal Article
%A Grégoire Nadin
%A Benoît Perthame
%A Min Tang
%T Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation
%J Comptes Rendus. Mathématique
%D 2011
%P 553-557
%V 349
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2011.03.008
%G en
%F CRMATH_2011__349_9-10_553_0
Grégoire Nadin; Benoît Perthame; Min Tang. Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 553-557. doi : 10.1016/j.crma.2011.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.008/

[1] N. Apreutesei; N. Bessonov; V. Volpert; V. Vougalter Spatial structures and generalized travelling waves for an integro-differential equation, Discrete Contin. Dynam. Systems: Ser. B, Volume 13 (2010) no. 3, pp. 537-557

[2] H. Berestycki; F. Hamel Front propagation in periodic excitable media, Comm. Pure Appl. Math., Volume 55 (2002), pp. 949-1032

[3] H. Berestycki; G. Nadin; B. Perthame; L. Ryzhik The non-local Fisher–KPP equation: traveling waves and steady states, Nonlinearity, Volume 22 (2009), pp. 2813-2844

[4] S. Genieys; V. Volpert; P. Auger Pattern and waves for a model in population dynamics with nonlocal consumption of resources, Math. Modelling Nat. Phenom., Volume 1 (2006), pp. 65-82

[5] S.A. Gourley Travelling front solutions of a nonlocal Fisher equation (3), J. Math. Biol., Volume 41 (2000) no. 3

[6] A.N. Kolmogorov; I.G. Petrovsky; N.S. Piskunov Etude de lʼéquation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université dʼEtat à Moscou (1937), pp. 1-26

[7] N. Shigesada; K. Kawasaki; E. Teramoto Traveling periodic waves in heterogeneous environments, Theor. Population Biol., Volume 30 (1986), pp. 143-160

Cited by Sources:

Comments - Policy