This Note investigates the properties of the traveling waves solutions of the nonlocal Fisher equation. The existence of such solutions has been proved recently in Berestycki et al. (2009) [3] but their asymptotic behavior was still unclear. We use here a new numerical approximation of these traveling waves which shows that some traveling waves connect the two homogeneous steady states 0 and 1, which is a striking fact since 0 is dynamically unstable and 1 is unstable in the sense of Turing.
Nous étudions dans cette Note les propriétés des solutions de type ondes progressives pour lʼéquation de Fisher non-locale. Lʼexistence de telles solutions a été prouvée récemment dans Berestycki et al. (2009) [3] mais leur comportement asymptotique était encore mal compris. Nous développons ici une nouvelle méthode dʼapproximation numérique montrant que certaines ondes progressives connectent les deux états dʼéquilibre homogènes 0 et 1, ce qui est surprenant puisque 0 est dynamiquement instable et 1 est instable au sens de Turing.
Accepted:
Published online:
Grégoire Nadin 1; Benoît Perthame 1, 2; Min Tang 1, 2
@article{CRMATH_2011__349_9-10_553_0, author = {Gr\'egoire Nadin and Beno{\^\i}t Perthame and Min Tang}, title = {Can a traveling wave connect two unstable states? {The} case of the nonlocal {Fisher} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {553--557}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.03.008}, language = {en}, }
TY - JOUR AU - Grégoire Nadin AU - Benoît Perthame AU - Min Tang TI - Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation JO - Comptes Rendus. Mathématique PY - 2011 SP - 553 EP - 557 VL - 349 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2011.03.008 LA - en ID - CRMATH_2011__349_9-10_553_0 ER -
%0 Journal Article %A Grégoire Nadin %A Benoît Perthame %A Min Tang %T Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation %J Comptes Rendus. Mathématique %D 2011 %P 553-557 %V 349 %N 9-10 %I Elsevier %R 10.1016/j.crma.2011.03.008 %G en %F CRMATH_2011__349_9-10_553_0
Grégoire Nadin; Benoît Perthame; Min Tang. Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 553-557. doi : 10.1016/j.crma.2011.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.008/
[1] Spatial structures and generalized travelling waves for an integro-differential equation, Discrete Contin. Dynam. Systems: Ser. B, Volume 13 (2010) no. 3, pp. 537-557
[2] Front propagation in periodic excitable media, Comm. Pure Appl. Math., Volume 55 (2002), pp. 949-1032
[3] The non-local Fisher–KPP equation: traveling waves and steady states, Nonlinearity, Volume 22 (2009), pp. 2813-2844
[4] Pattern and waves for a model in population dynamics with nonlocal consumption of resources, Math. Modelling Nat. Phenom., Volume 1 (2006), pp. 65-82
[5] Travelling front solutions of a nonlocal Fisher equation (3), J. Math. Biol., Volume 41 (2000) no. 3
[6] Etude de lʼéquation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université dʼEtat à Moscou (1937), pp. 1-26
[7] Traveling periodic waves in heterogeneous environments, Theor. Population Biol., Volume 30 (1986), pp. 143-160
Cited by Sources:
Comments - Policy