For , , we determine the irreducible components of the m-th jet scheme of a toric surface S. For m big enough, we connect the number of a class of these irreducible components to the number of exceptional divisors on the minimal resolution of S.
Pour , , on détermine les composantes irréductibles des m-espaces des jets dʼune surface torique S. Pour m assez grand, on relie le nombre dʼune classe de ces composantes au nombre de diviseur exceptionnel sur la résolution minimale de S.
Accepted:
Published online:
Hussein Mourtada 1
@article{CRMATH_2011__349_9-10_563_0, author = {Hussein Mourtada}, title = {Jet schemes of toric surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {563--566}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.03.018}, language = {en}, }
Hussein Mourtada. Jet schemes of toric surfaces. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 563-566. doi : 10.1016/j.crma.2011.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.018/
[1] Système générateur minimal, diviseurs essentiels et G-désingularisations de variétés toriques, Tohoku Math. J. (2), Volume 47 (1995) no. 2, pp. 125-149
[2] Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999) no. 1, pp. 201-232
[3] R. Docampo, Arcs on determinantal varieties, preprint, 2010.
[4] Jet schemes and singularities, Proc. Sympos. Pure Math., Part 2, vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 505-546
[5] The jet scheme of a monomial scheme, Comm. Algebra, Volume 34 (2006) no. 5, pp. 1591-1598
[6] The Nash problem on arc families of singularities, Duke Math. J., Volume 120 (2003) no. 3, pp. 601-620
[7] Toroidal Embeddings I, Lecture Notes in Math., vol. 339, Springer-Verlag, Berlin–New York, 1973
[8] M. Kontsevich, Lecture at Orsay, 1995.
[9] Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976), pp. 1-31
[10] Arcs analytiques et résolution minimale des singularités des surfaces quasi-homogènes, Séminaire sur les Singularités des Surfaces, Lecture Notes in Math., vol. 777, Springer, Berlin, 1980, pp. 304-336
[11] H. Mourtada, Jet schemes of complex branches and equisingularity, Ann. Inst. Fourier 61 (2011), in press.
[12] H. Mourtada, Jet schemes of rational double point singularities, preprint, 2010.
[13] Jet schemes of locally complete intersection canonical singularities, Invent. Math., Volume 145 (2001) no. 3, pp. 397-424 (with an appendix by David Eisenbud and Edward Frenkel)
[14] Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38
[15] Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties (3), Results in Mathematics and Related Areas (3), vol. 15, Springer-Verlag, Berlin, 1988
[16] Zweidimensionale Quotientensingularitäten: Gleichungen und Syzygien, Arch. Math. (Basel), Volume 37 (1981) no. 5, pp. 406-417
Cited by Sources:
Comments - Policy