We show that the elements of the ring of integers of real quadratic fields which are sums of integral squares are in fact sums of distinct squares, provided their norm is large enough.
Nous montrons que les entiers totalement positifs de normes suffisamment grandes sont des sommes de carrés distincts dans lʼanneau des entiers des corps réel quadratique.
Accepted:
Published online:
Byeong Moon Kim 1; Poo-Sung Park 2
@article{CRMATH_2011__349_9-10_497_0, author = {Byeong Moon Kim and Poo-Sung Park}, title = {Sums of distinct integral squares in real quadratic fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {497--500}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.03.019}, language = {en}, }
Byeong Moon Kim; Poo-Sung Park. Sums of distinct integral squares in real quadratic fields. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 497-500. doi : 10.1016/j.crma.2011.03.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.019/
[1] Calculation of class numbers by decomposition into three integral squares in the field of and , Amer. J. Math., Volume 83 (1961), pp. 33-56
[2] Sums of four squares in a quadratic ring, Trans. Amer. Math. Soc., Volume 105 (1962), pp. 536-556
[3] Über eine zahlentheoretische Anwendung von Modulfunktionen zweier Veränderlicher, Math. Ann., Volume 100 (1928) no. 1, pp. 411-437
[4] J.Y. Kim, Y.M. Lee, Sums of distinct integral squares in , and , preprint.
[5] On the representation of a binary quadratic form as a sum of squares of linear forms, Math. Z., Volume 35 (1932) no. 1, pp. 1-15
[6] Sums of distinct integral squares in , C. R. Acad. Sci. Paris, Sér. I, Volume 346 (2008) no. 13–14, pp. 723-725
[7] R. Scharlau, Zur Darstellbarkeit von totalreellen ganzen algebraischen Zahlen durch Summen von Quadraten, Dissertation, Bielefeld, 1979.
[8] Über Zerlegungen in ungleiche Quadratzahlen, Math. Z., Volume 51 (1948), pp. 289-290
Cited by Sources:
Comments - Policy