For every set of finite measure, we construct a system of exponentials which is complete in and such that the set of frequencies Λ has the critical density .
Pour tout ensemble de mesure finie nous construisons un système dʼexponentielles qui est total dans et dont lʼensemble des fréquences a la densité critique, à savoir .
Accepted:
Published online:
Alexander Olevskii 1; Alexander Ulanovskii 2
@article{CRMATH_2011__349_11-12_679_0, author = {Alexander Olevskii and Alexander Ulanovskii}, title = {Uniqueness sets for unbounded spectra}, journal = {Comptes Rendus. Math\'ematique}, pages = {679--681}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.010}, language = {en}, }
Alexander Olevskii; Alexander Ulanovskii. Uniqueness sets for unbounded spectra. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 679-681. doi : 10.1016/j.crma.2011.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.05.010/
[1] On support properties of -functions and their Fourier transforms, J. Funct. Anal., Volume 24 (1977) no. 3, pp. 258-267
[2] On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl., Volume 106 (1985) no. 1, pp. 180-183
[3] On the closure of characters and the zeros of entire functions, Acta Math., Volume 118 (1967), pp. 79-93
[4] A sparse regular sequence of exponentials closed on large sets, Bull. Amer. Math. Soc., Volume 70 (1964), pp. 566-569
[5] Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal., Volume 18 (2008) no. 3, pp. 1029-1052
[6] Interpolation in Bernstein and Paley–Wiener spaces, J. Funct. Anal., Volume 256 (2009) no. 10, pp. 3257-3278
[7] Approximation of discrete functions and size of spectrum, St. Petersburg Math. J., Volume 21 (2010), pp. 1015-1025
Cited by Sources:
Comments - Policy