We construct a class of framed -structure on the slit tangent space of a Rizza manifold. In the special case, we show that this class induces on the indicatrix bundle an almost paracontact metric structure.
On construit une classe de structures repérées sur lʼespace tangent marqué dʼune variété de Rizza. On démontre que cette classe induit une métrique presque-paracontacte sur lʼespace fibré de lʼindicatrice.
Accepted:
Published online:
Esmaeil Peyghan 1; Leila Nourmohammadi Far 1
@article{CRMATH_2011__349_11-12_683_0, author = {Esmaeil Peyghan and Leila Nourmohammadi Far}, title = {An almost paracontact structure on a {Rizza} manifold}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--686}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.06.005}, language = {en}, }
Esmaeil Peyghan; Leila Nourmohammadi Far. An almost paracontact structure on a Rizza manifold. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 683-686. doi : 10.1016/j.crma.2011.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.005/
[1] A relation between Finslerian and Hermitian metrics, Tensor (N.S.), Volume 16 (1965), pp. 1-3
[2] Kählerian Finsler manifold, J. Math. Tokushima Univ., Volume 28 (1994), pp. 19-27
[3] Almost Hermitian Finsler manifolds and nonlinear connections, Conf. Semin. Mat. Univ. Bari, vol. 215, 1986, pp. 1-13
[4] On the special Finsler metric, Bull. Korean Math. Soc., Volume 40 (2003), pp. 457-464
[5] Lichnerowicz connections in almost complex Finsler manifold, Bull. Korean Math. Soc., Volume 42 (2005), pp. 405-413
[6] Strutture di Finsler sulle varieta quasi complesse, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, Volume 33 (1962), pp. 271-275
[7] Connections on almost complex Finsler manifolds and Kobayashi Hyperbolicity, J. Korean Math. Soc., Volume 44 (2007), pp. 237-247
Cited by Sources:
Comments - Policy