Comptes Rendus
Geometry
An almost paracontact structure on a Rizza manifold
Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 683-686.

We construct a class of framed f(3,1)-structure on the slit tangent space of a Rizza manifold. In the special case, we show that this class induces on the indicatrix bundle an almost paracontact metric structure.

On construit une classe de structures repérées sur lʼespace tangent marqué dʼune variété de Rizza. On démontre que cette classe induit une métrique presque-paracontacte sur lʼespace fibré de lʼindicatrice.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.06.005

Esmaeil Peyghan 1; Leila Nourmohammadi Far 1

1 Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
@article{CRMATH_2011__349_11-12_683_0,
     author = {Esmaeil Peyghan and Leila Nourmohammadi Far},
     title = {An almost paracontact structure on a {Rizza} manifold},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {683--686},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.005},
     language = {en},
}
TY  - JOUR
AU  - Esmaeil Peyghan
AU  - Leila Nourmohammadi Far
TI  - An almost paracontact structure on a Rizza manifold
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 683
EP  - 686
VL  - 349
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2011.06.005
LA  - en
ID  - CRMATH_2011__349_11-12_683_0
ER  - 
%0 Journal Article
%A Esmaeil Peyghan
%A Leila Nourmohammadi Far
%T An almost paracontact structure on a Rizza manifold
%J Comptes Rendus. Mathématique
%D 2011
%P 683-686
%V 349
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2011.06.005
%G en
%F CRMATH_2011__349_11-12_683_0
Esmaeil Peyghan; Leila Nourmohammadi Far. An almost paracontact structure on a Rizza manifold. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 683-686. doi : 10.1016/j.crma.2011.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.005/

[1] E. Heil A relation between Finslerian and Hermitian metrics, Tensor (N.S.), Volume 16 (1965), pp. 1-3

[2] Y. Ichijyō Kählerian Finsler manifold, J. Math. Tokushima Univ., Volume 28 (1994), pp. 19-27

[3] Y. Ichijyō Almost Hermitian Finsler manifolds and nonlinear connections, Conf. Semin. Mat. Univ. Bari, vol. 215, 1986, pp. 1-13

[4] N. Lee On the special Finsler metric, Bull. Korean Math. Soc., Volume 40 (2003), pp. 457-464

[5] N. Lee; D.Y. Won Lichnerowicz connections in almost complex Finsler manifold, Bull. Korean Math. Soc., Volume 42 (2005), pp. 405-413

[6] G.B. Rizza Strutture di Finsler sulle varieta quasi complesse, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, Volume 33 (1962), pp. 271-275

[7] D.Y. Won; N. Lee Connections on almost complex Finsler manifolds and Kobayashi Hyperbolicity, J. Korean Math. Soc., Volume 44 (2007), pp. 237-247

Cited by Sources:

Comments - Policy