[Géométrie des ensembles log-concave des matrices aléatoires et une reconstruction approximative]
On étudie la propriété dʼisométrie restreinte dʼune matrice aléatoire Γ dont les lignes sont des vecteurs aléatoires indépendants isotropes log-concave. Pour cela on introduit un paramètre
We study the Restricted Isometry Property of a random matrix Γ with independent isotropic log-concave rows. To this end, we introduce a parameter
Accepté le :
Publié le :
Radosław Adamczak 1 ; Rafał Latała 1 ; Alexander E. Litvak 2 ; Alain Pajor 3 ; Nicole Tomczak-Jaegermann 2
@article{CRMATH_2011__349_13-14_783_0, author = {Rados{\l}aw Adamczak and Rafa{\l} Lata{\l}a and Alexander E. Litvak and Alain Pajor and Nicole Tomczak-Jaegermann}, title = {Geometry of log-concave ensembles of random matrices and approximate reconstruction}, journal = {Comptes Rendus. Math\'ematique}, pages = {783--786}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.025}, language = {en}, }
TY - JOUR AU - Radosław Adamczak AU - Rafał Latała AU - Alexander E. Litvak AU - Alain Pajor AU - Nicole Tomczak-Jaegermann TI - Geometry of log-concave ensembles of random matrices and approximate reconstruction JO - Comptes Rendus. Mathématique PY - 2011 SP - 783 EP - 786 VL - 349 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2011.06.025 LA - en ID - CRMATH_2011__349_13-14_783_0 ER -
%0 Journal Article %A Radosław Adamczak %A Rafał Latała %A Alexander E. Litvak %A Alain Pajor %A Nicole Tomczak-Jaegermann %T Geometry of log-concave ensembles of random matrices and approximate reconstruction %J Comptes Rendus. Mathématique %D 2011 %P 783-786 %V 349 %N 13-14 %I Elsevier %R 10.1016/j.crma.2011.06.025 %G en %F CRMATH_2011__349_13-14_783_0
Radosław Adamczak; Rafał Latała; Alexander E. Litvak; Alain Pajor; Nicole Tomczak-Jaegermann. Geometry of log-concave ensembles of random matrices and approximate reconstruction. Comptes Rendus. Mathématique, Volume 349 (2011) no. 13-14, pp. 783-786. doi : 10.1016/j.crma.2011.06.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.025/
[1] R. Adamczak, O. Guédon, A.E. Litvak, A. Pajor, N. Tomczak-Jaegermann, Condition number of a square matrix with i.i.d. columns drawn from a convex body, Proc. Amer. Math. Soc., , in press. | DOI
[2] Smallest singular value of random matrices with independent columns, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 853-856
[3] Quantitative estimates of the convergence of the empirical covariance matrix in log-concave Ensembles, Journal of AMS, Volume 234 (2010), pp. 535-561
[4] Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling, Constructive Approximation, Volume 34 (2011), pp. 61-88
[5] Sharp bounds on the rate of convergence of empirical covariance matrix, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 195-200
[6] R. Adamczak, R. Latała, A.E. Litvak, A. Pajor, N. Tomczak-Jaegermann, Tail estimates for norms of sums of log-concave random vectors, preprint, available at . | arXiv
[7] R. Adamczak, R. Latała, A.E. Litvak, A. Pajor, N. Tomczak-Jaegermann, Chevet type inequality and norms of submatrices, preprint, available at . | arXiv
[8] Random points in isotropic convex sets, Berkeley, CA, 1996 (Math. Sci. Res. Inst. Publ.), Volume vol. 34, Cambridge Univ. Press, Cambridge (1999), pp. 53-58
[9] Decoding by linear programming, IEEE Trans. Inform. Theory, Volume 51 (2005), pp. 4203-4215
[10] Neighborly Polytopes and Sparse Solutions of Underdetermined Linear Equations, Department of Statistics, Stanford University, 2005
[11] Random walks and
[12] Order statistics and concentration of
[13] Empirical processes with a bounded
[14] Reconstruction and subgaussian operators in asymptotic geometric analysis, Geom. Funct. Anal., Volume 17 (2007), pp. 1248-1282
[15] Concentration of mass on convex bodies, Geom. Funct. Anal., Volume 16 (2006), pp. 1021-1049
- Large deviations for random matrices in the orthogonal group and Stiefel manifold with applications to random projections of product distributions, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 60 (2024) no. 2 | DOI:10.1214/22-aihp1340
- An Introduction to Compressed Sensing, Compressed Sensing and Its Applications (2019), p. 1 | DOI:10.1007/978-3-319-73074-5_1
- On the Gap Between Restricted Isometry Properties and Sparse Recovery Conditions, IEEE Transactions on Information Theory, Volume 64 (2018) no. 8, p. 5478 | DOI:10.1109/tit.2016.2570244
- Dimensionality Reduction with Subgaussian Matrices: A Unified Theory, Foundations of Computational Mathematics, Volume 16 (2016) no. 5, p. 1367 | DOI:10.1007/s10208-015-9280-x
- On the Isotropic Constant of Random Polytopes, The Journal of Geometric Analysis, Volume 26 (2016) no. 1, p. 645 | DOI:10.1007/s12220-015-9567-9
- A Short Proof of Paouris' Inequality, Canadian Mathematical Bulletin, Volume 57 (2014) no. 1, p. 3 | DOI:10.4153/cmb-2012-014-5
- Moment estimates for convex measures, Electronic Journal of Probability, Volume 17 (2012) no. none | DOI:10.1214/ejp.v17-2150
Cité par 7 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier