Comptes Rendus
Partial Differential Equations
Uniqueness for an ill-posed parabolic system
[Unicité pour un système parabolique mal-posé]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1161-1165.

Lʼobjectif est de prouver lʼunicité de solution pour un système parabolique mal-posé. Ce résultat sert à établir lʼidentifiabilité pour le problème de detection de sources ponctuelles de pollution organique dans les eaux de surface.

The purpose is the uniqueness for an ill-posed parabolic system. This result enables us to state the identifiability for the problem of detecting pointwise organic pollution sources in surface waters.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.10.006

Faker Ben Belgacem 1

1 LMAC, EA 2222, université de technologie de Compiègne, BP 20529, 60205 Compiègne cedex, France
@article{CRMATH_2011__349_21-22_1161_0,
     author = {Faker Ben Belgacem},
     title = {Uniqueness for an ill-posed parabolic system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1161--1165},
     publisher = {Elsevier},
     volume = {349},
     number = {21-22},
     year = {2011},
     doi = {10.1016/j.crma.2011.10.006},
     language = {en},
}
TY  - JOUR
AU  - Faker Ben Belgacem
TI  - Uniqueness for an ill-posed parabolic system
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1161
EP  - 1165
VL  - 349
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2011.10.006
LA  - en
ID  - CRMATH_2011__349_21-22_1161_0
ER  - 
%0 Journal Article
%A Faker Ben Belgacem
%T Uniqueness for an ill-posed parabolic system
%J Comptes Rendus. Mathématique
%D 2011
%P 1161-1165
%V 349
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2011.10.006
%G en
%F CRMATH_2011__349_21-22_1161_0
Faker Ben Belgacem. Uniqueness for an ill-posed parabolic system. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1161-1165. doi : 10.1016/j.crma.2011.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.006/

[1] M. Andrle; F. Ben Belgacem; A. El Badia Identification of moving point-wise sources in an advection–dispersion–reaction equation, Inverse Problems, Volume 27 (2011), p. 025007

[2] C. Bernardi; C. Canuto; Y. Maday Generalized inf-sup condition for Chebyshev spectral approximation of the Stokes problem, SIAM J. Numer. Anal., Volume 25 (1988), pp. 1237-1271

[3] F. Brezzi; M. Fortin Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991

[4] R. Dautray; J.-L. Lions Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5, Springer-Verlag, 1992

[5] A. Pazy Semi-groups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983 (pp. 100–101)

[6] H.W. Streeter; E.B. Phelps A study of the pollution and natural purification of the Ohio river, US Public Health Bull., Volume 146 (1925)

Cité par Sources :

Commentaires - Politique