Comptes Rendus
Partial Differential Equations
Uniqueness for an ill-posed parabolic system
Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1161-1165.

The purpose is the uniqueness for an ill-posed parabolic system. This result enables us to state the identifiability for the problem of detecting pointwise organic pollution sources in surface waters.

Lʼobjectif est de prouver lʼunicité de solution pour un système parabolique mal-posé. Ce résultat sert à établir lʼidentifiabilité pour le problème de detection de sources ponctuelles de pollution organique dans les eaux de surface.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.10.006

Faker Ben Belgacem 1

1 LMAC, EA 2222, université de technologie de Compiègne, BP 20529, 60205 Compiègne cedex, France
@article{CRMATH_2011__349_21-22_1161_0,
     author = {Faker Ben Belgacem},
     title = {Uniqueness for an ill-posed parabolic system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1161--1165},
     publisher = {Elsevier},
     volume = {349},
     number = {21-22},
     year = {2011},
     doi = {10.1016/j.crma.2011.10.006},
     language = {en},
}
TY  - JOUR
AU  - Faker Ben Belgacem
TI  - Uniqueness for an ill-posed parabolic system
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1161
EP  - 1165
VL  - 349
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2011.10.006
LA  - en
ID  - CRMATH_2011__349_21-22_1161_0
ER  - 
%0 Journal Article
%A Faker Ben Belgacem
%T Uniqueness for an ill-posed parabolic system
%J Comptes Rendus. Mathématique
%D 2011
%P 1161-1165
%V 349
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2011.10.006
%G en
%F CRMATH_2011__349_21-22_1161_0
Faker Ben Belgacem. Uniqueness for an ill-posed parabolic system. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1161-1165. doi : 10.1016/j.crma.2011.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.006/

[1] M. Andrle; F. Ben Belgacem; A. El Badia Identification of moving point-wise sources in an advection–dispersion–reaction equation, Inverse Problems, Volume 27 (2011), p. 025007

[2] C. Bernardi; C. Canuto; Y. Maday Generalized inf-sup condition for Chebyshev spectral approximation of the Stokes problem, SIAM J. Numer. Anal., Volume 25 (1988), pp. 1237-1271

[3] F. Brezzi; M. Fortin Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991

[4] R. Dautray; J.-L. Lions Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5, Springer-Verlag, 1992

[5] A. Pazy Semi-groups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983 (pp. 100–101)

[6] H.W. Streeter; E.B. Phelps A study of the pollution and natural purification of the Ohio river, US Public Health Bull., Volume 146 (1925)

Cited by Sources:

Comments - Policy