Comptes Rendus
Complex Analysis
An avoidance criterion for normal functions
Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1159-1160.

Let f be a meromorphic function in the unit disc Δ, φ1, φ2 and φ3 be three functions meromorphic in Δ and continuous on closure of Δ such that φi(z)φj(z) (1i<j3) on the unit circle |z|=1. If f(z)φi(z) (i=1,2,3) in Δ, then f is normal.

Soit f une fonction méromorphe dans le disque unité Δ, soient φ1, φ2 et φ3 trois fonctions méromorphes dans Δ et continues sur lʼadhérence de Δ et dont les restrictions au cercle unité sont deux à deux distinctes. Alors, si la fonction f est distincte des φi(z) (i=1,2,3), elle est normale.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.10.018

Yan Xu 1; Huiling Qiu 2

1 Institute of Mathematics, School of Mathematics, Nanjing Normal University, Nanjing 210046, PR China
2 Department of Applied Mathematics, Nanjing Audit University, Nanjing 210029, PR China
@article{CRMATH_2011__349_21-22_1159_0,
     author = {Yan Xu and Huiling Qiu},
     title = {An avoidance criterion for normal functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1159--1160},
     publisher = {Elsevier},
     volume = {349},
     number = {21-22},
     year = {2011},
     doi = {10.1016/j.crma.2011.10.018},
     language = {en},
}
TY  - JOUR
AU  - Yan Xu
AU  - Huiling Qiu
TI  - An avoidance criterion for normal functions
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1159
EP  - 1160
VL  - 349
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2011.10.018
LA  - en
ID  - CRMATH_2011__349_21-22_1159_0
ER  - 
%0 Journal Article
%A Yan Xu
%A Huiling Qiu
%T An avoidance criterion for normal functions
%J Comptes Rendus. Mathématique
%D 2011
%P 1159-1160
%V 349
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2011.10.018
%G en
%F CRMATH_2011__349_21-22_1159_0
Yan Xu; Huiling Qiu. An avoidance criterion for normal functions. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1159-1160. doi : 10.1016/j.crma.2011.10.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.018/

[1] P. Lappan Avoidance criteria for normal families and normal functions, Berlin, 2001, World Sci. Publ., River Edge, NJ (2003), pp. 221-228

[2] O. Lehto; K.I. Virtanen Boundary behaviour and normal meromorphic functions, Acta Math., Volume 97 (1957), pp. 47-65

[3] A.J. Lohwater; Ch. Pommerenke On normal meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 550 (1973) (12 pp)

[4] J. Schiff Normal Families, Springer-Verlag, New York/Berlin, 1993

[5] L. Yang Value Distribution Theory, Springer-Verlag & Science Press, Berlin, 1993

Cited by Sources:

The first author is supported by NNSF of China (Grant Nos. 10871094; 11171045).

Comments - Policy