We use a Simons type equation in order to characterize complete non-minimal pmc surfaces with non-negative Gaussian curvature.
Dans cette Note, on étudie des immersions isométriques de surfaces complètes dans , ou est une variété complète simplement connexe de courbure sectionnelle constante c. On classifie ces immersions, lorsque leur vecteur courbure moyenne est parallèle dans le fibré normal et leur courbure intrinsèque est positive ou nulle. Lʼoutil principal est une différentielle quadratique holomorphe dont la partie sans trace satisfait lʼéquation de Codazzi.
Accepted:
Published online:
Dorel Fetcu 1; Harold Rosenberg 2
@article{CRMATH_2011__349_21-22_1195_0, author = {Dorel Fetcu and Harold Rosenberg}, title = {A {Note} on surfaces with parallel mean curvature}, journal = {Comptes Rendus. Math\'ematique}, pages = {1195--1197}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.012}, language = {en}, }
Dorel Fetcu; Harold Rosenberg. A Note on surfaces with parallel mean curvature. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1195-1197. doi : 10.1016/j.crma.2011.10.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.012/
[1] A Hopf differential for constant mean curvature surfaces in and , Acta Math., Volume 193 (2004), pp. 141-174
[2] Generalized Hopf differentials, Mat. Contemp., Volume 28 (2005), pp. 1-28
[3] A theorem of Hopf and the Cauchy–Riemann inequality, Comm. Anal. Geom., Volume 15 (2007), pp. 283-298
[4] A Hopf theorem for ambient spaces of dimensions higher than three, J. Differential Geometry, Volume 84 (2010), pp. 1-17
[5] M. Batista, Simons type equation in and and applications, Ann. Inst. Fourier, in press.
[6] Hypersurfaces with constant scalar curvature, Math. Ann., Volume 225 (1977), pp. 195-204
[7] Complete constant mean curvature surfaces in homogeneous spaces, Comment. Math. Helv., Volume 86 (2011), pp. 659-674
[8] On subharmonic functions and differential geometry in the large, Comment. Math. Helv., Volume 32 (1957), pp. 13-71
[9] A formula of Simonsʼ type and hypersurfaces with constant mean curvature, J. Differential Geometry, Volume 3 (1969), pp. 367-377
[10] Minimal varieties in Riemannian manifolds, Ann. of Math., Volume 88 (1968), pp. 62-105
[11] Submanifolds of constant mean curvature, Math. Ann., Volume 205 (1973), pp. 265-280
Cited by Sources:
Comments - Policy