[Une méthode de décomposition de domaine à deux niveaux robuste pour les systèmes dʼEDPs]
Un moyen efficace pour obtenir des méthodes de décomposition de domaine extensibles ( « scalable » en anglais) est lʼutilisation dʼune grille grossière. Cependant, lorsque les coefficients des équations présentent de grandes hétérogénéités, les méthodes usuelles tombent en défaut, surtout dans le cas des systèmes. Nous introduisons ici, au niveau variationnel, une grille grossière robuste même en présence de telles discontinuités. Pour cela, nous résolvons des problèmes aux valeurs propres généralisés locaux qui isolent les composantes de la solution nuisant à la convergence. Nous présentons un résultat théorique général puis quelques résultats numériques pour un problème dʼélasticité à coefficients discontinus.
Coarse spaces are instrumental in obtaining scalability for domain decomposition methods. However, it is known that most popular choices of coarse spaces perform rather weakly in presence of heterogeneities in the coefficients in the partial differential equations, especially for systems. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems which isolate the terms responsible for slow convergence. We give a general theoretical result and then some numerical examples on a heterogeneous elasticity problem.
Accepté le :
Publié le :
Nicole Spillane 1, 2 ; Victorita Dolean 3 ; Patrice Hauret 2 ; Frédéric Nataf 1 ; Clemens Pechstein 4 ; Robert Scheichl 5
@article{CRMATH_2011__349_23-24_1255_0, author = {Nicole Spillane and Victorita Dolean and Patrice Hauret and Fr\'ed\'eric Nataf and Clemens Pechstein and Robert Scheichl}, title = {A robust two-level domain decomposition preconditioner for systems of {PDEs}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1255--1259}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.10.021}, language = {en}, }
TY - JOUR AU - Nicole Spillane AU - Victorita Dolean AU - Patrice Hauret AU - Frédéric Nataf AU - Clemens Pechstein AU - Robert Scheichl TI - A robust two-level domain decomposition preconditioner for systems of PDEs JO - Comptes Rendus. Mathématique PY - 2011 SP - 1255 EP - 1259 VL - 349 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2011.10.021 LA - en ID - CRMATH_2011__349_23-24_1255_0 ER -
%0 Journal Article %A Nicole Spillane %A Victorita Dolean %A Patrice Hauret %A Frédéric Nataf %A Clemens Pechstein %A Robert Scheichl %T A robust two-level domain decomposition preconditioner for systems of PDEs %J Comptes Rendus. Mathématique %D 2011 %P 1255-1259 %V 349 %N 23-24 %I Elsevier %R 10.1016/j.crma.2011.10.021 %G en %F CRMATH_2011__349_23-24_1255_0
Nicole Spillane; Victorita Dolean; Patrice Hauret; Frédéric Nataf; Clemens Pechstein; Robert Scheichl. A robust two-level domain decomposition preconditioner for systems of PDEs. Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1255-1259. doi : 10.1016/j.crma.2011.10.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.021/
[1] V. Dolean, F. Nataf, R. Scheichl, N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps, 2011, submitted for publication, . | HAL
[2] Y. Efendiev, J. Galvis, R. Lazarov, J. Willems, Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, RICAM report, 2011.
[3] FreeFem++ http://www.freefem.org/ff++/ (Laboratoire J.L. Lions, CNRS UMR 7598)
[4] Domain decomposition methods in computational mechanics, Comput. Mech. Adv., Volume 1 (1994) no. 2, pp. 121-220
[5] A coarse space construction based on local Dirichlet to Neumann maps, 2011 (SISC) | HAL
[6] C. Pechstein, R. Scheichl, Weighted Poincaré inequalities, Tech. Report NuMa-Report 2010-10, Institute of Computational Mathematics, Johannes Kepler University, Linz, December 2010, submitted for publication.
[7] Domain Decomposition Methods: Algorithms and Theory, Springer, 2005
- New Convergence Analysis of GMRES with Weighted Norms, Preconditioning, and Deflation, Leading to a New Deflation Space, SIAM Journal on Matrix Analysis and Applications, Volume 45 (2024) no. 4, p. 1721 | DOI:10.1137/23m1622398
- Hermitian Preconditioning for a Class of Non-Hermitian Linear Systems, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 3, p. A1903 | DOI:10.1137/23m1559026
- A Multilevel Extension of the GDSW Overlapping Schwarz Preconditioner in Two Dimensions, Computational Methods in Applied Mathematics, Volume 23 (2023) no. 4, p. 953 | DOI:10.1515/cmam-2022-0168
- Sparse Aitken–Schwarz domain decomposition with application to Darcy flow, Computers Fluids, Volume 249 (2022), p. 105687 | DOI:10.1016/j.compfluid.2022.105687
- Spectral Coarse Spaces for the Substructured Parallel Schwarz Method, Journal of Scientific Computing, Volume 91 (2022) no. 3 | DOI:10.1007/s10915-022-01840-9
- Substructured two-grid and multi-grid domain decomposition methods, Numerical Algorithms, Volume 91 (2022) no. 1, p. 413 | DOI:10.1007/s11075-022-01268-0
- Analysis, improvement and limits of the multiscale Latin method, Computer Methods in Applied Mechanics and Engineering, Volume 384 (2021), p. 113955 | DOI:10.1016/j.cma.2021.113955
- An Element-Based Preconditioner for Mixed Finite Element Problems, SIAM Journal on Scientific Computing, Volume 43 (2021) no. 5, p. S884 | DOI:10.1137/20m1336461
- , 2020 IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical Parallelism for Exascale Computing (HiPar) (2020), p. 85 | DOI:10.1109/llvmhpchipar51896.2020.00014
- A two-level overlapping Schwarz method with energy-minimizing multiscale coarse basis functions, Journal of Computational and Applied Mathematics, Volume 370 (2020), p. 112600 | DOI:10.1016/j.cam.2019.112600
- A robust and scalable multi-level domain decomposition preconditioner for multi-core architecture with large number of cores, Journal of Computational and Applied Mathematics, Volume 373 (2020), p. 112614 | DOI:10.1016/j.cam.2019.112614
- A High-Performance Implementation of a Robust Preconditioner for Heterogeneous Problems, Parallel Processing and Applied Mathematics, Volume 12043 (2020), p. 117 | DOI:10.1007/978-3-030-43229-4_11
- Scalable solvers for complex electromagnetics problems, Finite Elements in Analysis and Design, Volume 161 (2019), p. 16 | DOI:10.1016/j.finel.2019.04.003
- Physics-Based Balancing Domain Decomposition by Constraints for Multi-Material Problems, Journal of Scientific Computing, Volume 79 (2019) no. 2, p. 718 | DOI:10.1007/s10915-018-0870-z
- Complete, Optimal and Optimized Coarse Spaces for Additive Schwarz, Domain Decomposition Methods in Science and Engineering XXIV, Volume 125 (2018), p. 301 | DOI:10.1007/978-3-319-93873-8_28
- BDDC and FETI-DP Methods with Enriched Coarse Spaces for Elliptic Problems with Oscillatory and High Contrast Coefficients, Domain Decomposition Methods in Science and Engineering XXIII, Volume 116 (2017), p. 179 | DOI:10.1007/978-3-319-52389-7_17
- BDDC and FETI-DP preconditioners with adaptive coarse spaces for three-dimensional elliptic problems with oscillatory and high contrast coefficients, Journal of Computational Physics, Volume 349 (2017), p. 191 | DOI:10.1016/j.jcp.2017.08.003
- A BDDC algorithm with adaptive primal constraints for staggered discontinuous Galerkin approximation of elliptic problems with highly oscillating coefficients, Journal of Computational and Applied Mathematics, Volume 311 (2017), p. 599 | DOI:10.1016/j.cam.2016.08.028
- Adaptive Coarse Spaces for FETI-DP in Three Dimensions, SIAM Journal on Scientific Computing, Volume 38 (2016) no. 5, p. A2880 | DOI:10.1137/15m1049610
- A BDDC Algorithm with Enriched Coarse Spaces for Two-Dimensional Elliptic Problems with Oscillatory and High Contrast Coefficients, Multiscale Modeling Simulation, Volume 13 (2015) no. 2, p. 571 | DOI:10.1137/140970598
- Optimized Schwarz and 2-Lagrange Multiplier Methods for Multiscale Elliptic PDEs, SIAM Journal on Scientific Computing, Volume 37 (2015) no. 6, p. A2896 | DOI:10.1137/15m1009676
- Overlapping Domain Decomposition Methods with FreeFem++, Domain Decomposition Methods in Science and Engineering XXI, Volume 98 (2014), p. 315 | DOI:10.1007/978-3-319-05789-7_28
- Achieving Robustness Through Coarse Space Enrichment in the Two Level Schwarz Framework, Domain Decomposition Methods in Science and Engineering XXI, Volume 98 (2014), p. 447 | DOI:10.1007/978-3-319-05789-7_42
- How to Make a Domain Decomposition Method More Robust, Large-Scale Scientific Computing, Volume 8353 (2014), p. 355 | DOI:10.1007/978-3-662-43880-0_40
- Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Numerische Mathematik, Volume 126 (2014) no. 4, p. 741 | DOI:10.1007/s00211-013-0576-y
- Two-Level Domain Decomposition Methods for Highly Heterogeneous Darcy Equations. Connections with Multiscale Methods, Oil Gas Science and Technology – Revue d’IFP Energies nouvelles, Volume 69 (2014) no. 4, p. 731 | DOI:10.2516/ogst/2013206
- Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms, International Journal for Numerical Methods in Engineering, Volume 95 (2013) no. 11, p. 953 | DOI:10.1002/nme.4534
- , Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (2013), p. 1 | DOI:10.1145/2503210.2503212
Cité par 28 documents. Sources : Crossref
Commentaires - Politique