Comptes Rendus
Partial Differential Equations/Numerical Analysis
A robust two-level domain decomposition preconditioner for systems of PDEs
[Une méthode de décomposition de domaine à deux niveaux robuste pour les systèmes dʼEDPs]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1255-1259.

Un moyen efficace pour obtenir des méthodes de décomposition de domaine extensibles ( « scalable » en anglais) est lʼutilisation dʼune grille grossière. Cependant, lorsque les coefficients des équations présentent de grandes hétérogénéités, les méthodes usuelles tombent en défaut, surtout dans le cas des systèmes. Nous introduisons ici, au niveau variationnel, une grille grossière robuste même en présence de telles discontinuités. Pour cela, nous résolvons des problèmes aux valeurs propres généralisés locaux qui isolent les composantes de la solution nuisant à la convergence. Nous présentons un résultat théorique général puis quelques résultats numériques pour un problème dʼélasticité à coefficients discontinus.

Coarse spaces are instrumental in obtaining scalability for domain decomposition methods. However, it is known that most popular choices of coarse spaces perform rather weakly in presence of heterogeneities in the coefficients in the partial differential equations, especially for systems. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems which isolate the terms responsible for slow convergence. We give a general theoretical result and then some numerical examples on a heterogeneous elasticity problem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.10.021

Nicole Spillane 1, 2 ; Victorita Dolean 3 ; Patrice Hauret 2 ; Frédéric Nataf 1 ; Clemens Pechstein 4 ; Robert Scheichl 5

1 Laboratoire J.L. Lions, UMR 7598, UPMC université Paris 6, 75252 Paris cedex 05, France
2 Michelin Technology Center, place des Carmes-Déchaux, 63000 Clermont-Ferrand, France
3 Laboratoire J.-A. Dieudonné, UMR 6621, université de Nice-Sophia Antipolis, 06108 Nice cedex 02, France
4 Institute of Computational Mathematics, Johannes Kepler Universität, Altenberger Str. 69, A-4040 Linz, Austria
5 Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
@article{CRMATH_2011__349_23-24_1255_0,
     author = {Nicole Spillane and Victorita Dolean and Patrice Hauret and Fr\'ed\'eric Nataf and Clemens Pechstein and Robert Scheichl},
     title = {A robust two-level domain decomposition preconditioner for systems of {PDEs}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1255--1259},
     publisher = {Elsevier},
     volume = {349},
     number = {23-24},
     year = {2011},
     doi = {10.1016/j.crma.2011.10.021},
     language = {en},
}
TY  - JOUR
AU  - Nicole Spillane
AU  - Victorita Dolean
AU  - Patrice Hauret
AU  - Frédéric Nataf
AU  - Clemens Pechstein
AU  - Robert Scheichl
TI  - A robust two-level domain decomposition preconditioner for systems of PDEs
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1255
EP  - 1259
VL  - 349
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2011.10.021
LA  - en
ID  - CRMATH_2011__349_23-24_1255_0
ER  - 
%0 Journal Article
%A Nicole Spillane
%A Victorita Dolean
%A Patrice Hauret
%A Frédéric Nataf
%A Clemens Pechstein
%A Robert Scheichl
%T A robust two-level domain decomposition preconditioner for systems of PDEs
%J Comptes Rendus. Mathématique
%D 2011
%P 1255-1259
%V 349
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2011.10.021
%G en
%F CRMATH_2011__349_23-24_1255_0
Nicole Spillane; Victorita Dolean; Patrice Hauret; Frédéric Nataf; Clemens Pechstein; Robert Scheichl. A robust two-level domain decomposition preconditioner for systems of PDEs. Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1255-1259. doi : 10.1016/j.crma.2011.10.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.021/

[1] V. Dolean, F. Nataf, R. Scheichl, N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps, 2011, submitted for publication, . | HAL

[2] Y. Efendiev, J. Galvis, R. Lazarov, J. Willems, Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, RICAM report, 2011.

[3] F. Hecht FreeFem++ http://www.freefem.org/ff++/ (Laboratoire J.L. Lions, CNRS UMR 7598)

[4] P. Le Tallec Domain decomposition methods in computational mechanics, Comput. Mech. Adv., Volume 1 (1994) no. 2, pp. 121-220

[5] F. Nataf; H. Xiang; V. Dolean; N. Spillane A coarse space construction based on local Dirichlet to Neumann maps, 2011 (SISC) | HAL

[6] C. Pechstein, R. Scheichl, Weighted Poincaré inequalities, Tech. Report NuMa-Report 2010-10, Institute of Computational Mathematics, Johannes Kepler University, Linz, December 2010, submitted for publication.

[7] A. Toselli; O. Widlund Domain Decomposition Methods: Algorithms and Theory, Springer, 2005

  • Nicole Spillane; Daniel B. Szyld New Convergence Analysis of GMRES with Weighted Norms, Preconditioning, and Deflation, Leading to a New Deflation Space, SIAM Journal on Matrix Analysis and Applications, Volume 45 (2024) no. 4, p. 1721 | DOI:10.1137/23m1622398
  • Nicole Spillane Hermitian Preconditioning for a Class of Non-Hermitian Linear Systems, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 3, p. A1903 | DOI:10.1137/23m1559026
  • Alexander Heinlein; Oliver Rheinbach; Friederike Röver A Multilevel Extension of the GDSW Overlapping Schwarz Preconditioner in Two Dimensions, Computational Methods in Applied Mathematics, Volume 23 (2023) no. 4, p. 953 | DOI:10.1515/cmam-2022-0168
  • L. Berenguer; D. Tromeur-Dervout Sparse Aitken–Schwarz domain decomposition with application to Darcy flow, Computers Fluids, Volume 249 (2022), p. 105687 | DOI:10.1016/j.compfluid.2022.105687
  • Gabriele Ciaramella; Tommaso Vanzan Spectral Coarse Spaces for the Substructured Parallel Schwarz Method, Journal of Scientific Computing, Volume 91 (2022) no. 3 | DOI:10.1007/s10915-022-01840-9
  • G. Ciaramella; T. Vanzan Substructured two-grid and multi-grid domain decomposition methods, Numerical Algorithms, Volume 91 (2022) no. 1, p. 413 | DOI:10.1007/s11075-022-01268-0
  • Paul Oumaziz; Pierre Gosselet; Karin Saavedra; Nicolas Tardieu Analysis, improvement and limits of the multiscale Latin method, Computer Methods in Applied Mechanics and Engineering, Volume 384 (2021), p. 113955 | DOI:10.1016/j.cma.2021.113955
  • Tyrone Rees; Michael Wathen An Element-Based Preconditioner for Mixed Finite Element Problems, SIAM Journal on Scientific Computing, Volume 43 (2021) no. 5, p. S884 | DOI:10.1137/20m1336461
  • Jean-Marc Gratien, 2020 IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical Parallelism for Exascale Computing (HiPar) (2020), p. 85 | DOI:10.1109/llvmhpchipar51896.2020.00014
  • Junxian Wang; Eric Chung; Hyea Hyun Kim A two-level overlapping Schwarz method with energy-minimizing multiscale coarse basis functions, Journal of Computational and Applied Mathematics, Volume 370 (2020), p. 112600 | DOI:10.1016/j.cam.2019.112600
  • Jean-Marc Gratien A robust and scalable multi-level domain decomposition preconditioner for multi-core architecture with large number of cores, Journal of Computational and Applied Mathematics, Volume 373 (2020), p. 112614 | DOI:10.1016/j.cam.2019.112614
  • Linus Seelinger; Anne Reinarz; Robert Scheichl A High-Performance Implementation of a Robust Preconditioner for Heterogeneous Problems, Parallel Processing and Applied Mathematics, Volume 12043 (2020), p. 117 | DOI:10.1007/978-3-030-43229-4_11
  • Santiago Badia; Alberto F. Martín; Marc Olm Scalable solvers for complex electromagnetics problems, Finite Elements in Analysis and Design, Volume 161 (2019), p. 16 | DOI:10.1016/j.finel.2019.04.003
  • Santiago Badia; Alberto F. Martín; Hieu Nguyen Physics-Based Balancing Domain Decomposition by Constraints for Multi-Material Problems, Journal of Scientific Computing, Volume 79 (2019) no. 2, p. 718 | DOI:10.1007/s10915-018-0870-z
  • Martin J. Gander; Bo Song Complete, Optimal and Optimized Coarse Spaces for Additive Schwarz, Domain Decomposition Methods in Science and Engineering XXIV, Volume 125 (2018), p. 301 | DOI:10.1007/978-3-319-93873-8_28
  • Hyea Hyun Kim; Eric T. Chung; Junxian Wang BDDC and FETI-DP Methods with Enriched Coarse Spaces for Elliptic Problems with Oscillatory and High Contrast Coefficients, Domain Decomposition Methods in Science and Engineering XXIII, Volume 116 (2017), p. 179 | DOI:10.1007/978-3-319-52389-7_17
  • Hyea Hyun Kim; Eric Chung; Junxian Wang BDDC and FETI-DP preconditioners with adaptive coarse spaces for three-dimensional elliptic problems with oscillatory and high contrast coefficients, Journal of Computational Physics, Volume 349 (2017), p. 191 | DOI:10.1016/j.jcp.2017.08.003
  • Hyea Hyun Kim; Eric T. Chung; Chenxiao Xu A BDDC algorithm with adaptive primal constraints for staggered discontinuous Galerkin approximation of elliptic problems with highly oscillating coefficients, Journal of Computational and Applied Mathematics, Volume 311 (2017), p. 599 | DOI:10.1016/j.cam.2016.08.028
  • Axel Klawonn; Martin Kühn; Oliver Rheinbach Adaptive Coarse Spaces for FETI-DP in Three Dimensions, SIAM Journal on Scientific Computing, Volume 38 (2016) no. 5, p. A2880 | DOI:10.1137/15m1049610
  • Hyea Hyun Kim; Eric T. Chung A BDDC Algorithm with Enriched Coarse Spaces for Two-Dimensional Elliptic Problems with Oscillatory and High Contrast Coefficients, Multiscale Modeling Simulation, Volume 13 (2015) no. 2, p. 571 | DOI:10.1137/140970598
  • Sébastien Loisel; Hieu Nguyen; Robert Scheichl Optimized Schwarz and 2-Lagrange Multiplier Methods for Multiscale Elliptic PDEs, SIAM Journal on Scientific Computing, Volume 37 (2015) no. 6, p. A2896 | DOI:10.1137/15m1009676
  • Pierre Jolivet; Frédéric Hecht; Frédéric Nataf; Christophe Prud’homme Overlapping Domain Decomposition Methods with FreeFem++, Domain Decomposition Methods in Science and Engineering XXI, Volume 98 (2014), p. 315 | DOI:10.1007/978-3-319-05789-7_28
  • Nicole Spillane; Victorita Dolean; Patrice Hauret; Frédéric Nataf; Clemens Pechstein; Robert Scheichl Achieving Robustness Through Coarse Space Enrichment in the Two Level Schwarz Framework, Domain Decomposition Methods in Science and Engineering XXI, Volume 98 (2014), p. 447 | DOI:10.1007/978-3-319-05789-7_42
  • Nicole Spillane How to Make a Domain Decomposition Method More Robust, Large-Scale Scientific Computing, Volume 8353 (2014), p. 355 | DOI:10.1007/978-3-662-43880-0_40
  • N. Spillane; V. Dolean; P. Hauret; F. Nataf; C. Pechstein; R. Scheichl Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Numerische Mathematik, Volume 126 (2014) no. 4, p. 741 | DOI:10.1007/s00211-013-0576-y
  • Victorita Dolean; Pierre Jolivet; Frédéric Nataf; Nicole Spillane; Hua Xiang Two-Level Domain Decomposition Methods for Highly Heterogeneous Darcy Equations. Connections with Multiscale Methods, Oil Gas Science and Technology – Revue d’IFP Energies nouvelles, Volume 69 (2014) no. 4, p. 731 | DOI:10.2516/ogst/2013206
  • N. Spillane; D.J. Rixen Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms, International Journal for Numerical Methods in Engineering, Volume 95 (2013) no. 11, p. 953 | DOI:10.1002/nme.4534
  • Pierre Jolivet; Frédéric Hecht; Frédéric Nataf; Christophe Prud'homme, Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (2013), p. 1 | DOI:10.1145/2503210.2503212

Cité par 28 documents. Sources : Crossref

Commentaires - Politique