If satisfies , where Δ is the Erdös–Hooley function, we show that the series converges for almost every x, whenever the coefficient sequence verifies the condition
Pour toute fonction telle que , où Δ est la fonction de Erdös–Hooley, nous montrons que la série converge presque partout dès que la suite des coefficients vérifie
Accepted:
Published online:
Michel J.G. Weber 1
@article{CRMATH_2011__349_23-24_1261_0, author = {Michel J.G. Weber}, title = {On systems of dilated functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1261--1263}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.11.003}, language = {en}, }
Michel J.G. Weber. On systems of dilated functions. Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1261-1263. doi : 10.1016/j.crma.2011.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.003/
[1] I. Berkes, On the convergence of and the Lip 1/2 class, Trans. Amer. Math. Soc. 349 (10) 4143–4158.
[2] On the convergence of , Memoirs of the A.M.S., Volume 201 (2009) no. 943 (vi+72p)
[3] On convergence and growth of partial sums of Fourier series, Acta Math., Volume 116 (1966), pp. 135-157
[4] On convergence and divergence systems, Mat. Zametki, Volume 4 (1968), pp. 253-260
[5] An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979
[6] A new technique and its application to the theory of numbers, Proc. London Math. Soc. (3), Volume 38 (1979), pp. 115-151
[7] Dynamical Systems and Processes, IRMA Lectures in Mathematics and Theoretical Physics, vol. 14, European Mathematical Society Publishing House, 2009 (xiii+759p)
Cited by Sources:
Comments - Policy