Let denote an extension of integral domains, Γ be a nonzero torsion-free grading monoid with , and . In this paper, we give a necessary and sufficient criteria for to be a Prüfer domain or a GCD-domain.
Soit une extension dʼanneaux commutatifs intègres, Γ un monoïde commutatif simplifiable sans torsion non trivial tel que . On note et soit . Dans cette note, on donne des conditions nécessaires et suffisantes pour que soit un anneau de Prüfer ou un anneau à pgcd.
Accepted:
Published online:
Jung Wook Lim 1
@article{CRMATH_2011__349_21-22_1135_0, author = {Jung Wook Lim}, title = {The $ D+E[{\Gamma }^{{\textasteriskcentered}}]$ construction from {Pr\"ufer} domains and {GCD-domains}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1135--1138}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.023}, language = {en}, }
Jung Wook Lim. The $ D+E[{\Gamma }^{⁎}]$ construction from Prüfer domains and GCD-domains. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1135-1138. doi : 10.1016/j.crma.2011.10.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.023/
[1] Splitting the t-class group, J. Pure Appl. Algebra, Volume 74 (1991), pp. 17-37
[2] The ring and t-splitting sets, Arab. J. Sci. Eng. Sect. C Theme Issues, Volume 26 (2001), pp. 3-16
[3] The class group of , J. Pure Appl. Algebra, Volume 52 (1988), pp. 199-212
[4] On flat overrings, ideal transforms and generalized transforms of a commutative ring, J. Algebra, Volume 18 (1971), pp. 254-263
[5] Generalized quotient rings, Math. Nachr., Volume 53 (1972), pp. 181-210
[6] On overrings of a domain, J. Sci. Hiroshima Univ. Ser. A-I, Volume 33 (1969), pp. 95-104
[7] Prüfer v-multiplication domains and related domains of the form , J. Algebra, Volume 323 (2010), pp. 3124-3133
[8] The construction , J. Algebra, Volume 53 (1978), pp. 423-439
[9] Commutative Semigroup Rings, Univ. of Chicago Press, Chicago and London, 1984
[10] Multiplicative Ideal Theory, Queenʼs Papers in Pure and Appl. Math., vol. 90, Queenʼs University, Kingston, Ontario, Canada, 1992
[11] Commutative Rings, Polygonal Publishing House, Washington, New Jersey, 1994
[12] J.W. Lim, Generalized Krull domains and the composite semigroup ring , submitted for publication.
Cited by Sources:
Comments - Policy