We prove the following conjecture due to Bryant Mathews (2008). Let Q be the orthogonal grassmannian of totally isotropic i-planes of a non-degenerate quadratic form q over an arbitrary field (where i is an integer satisfying ). If the degree of each closed point on Q is divisible by and the Witt index of q over the function field of Q is equal to i, then the variety Q is 2-incompressible.
Nous démontrons la conjecture ci-dessous due à Bryant Mathews (2008). Soit Q la grassmannienne orthogonale des i-plans totalement isotropes dʼune forme quadratique non dégénérée q sur un corps arbitraire (où i est un entier satisfaisant ). Si le degré de tout point fermé sur Q est divisible par et lʼindice de Witt de la forme q au-dessus du corps des fonctions de Q est égal à i, alors la variété Q est 2-incompressible.
Accepted:
Published online:
Nikita A. Karpenko 1
@article{CRMATH_2011__349_21-22_1131_0, author = {Nikita A. Karpenko}, title = {Incompressibility of orthogonal grassmannians}, journal = {Comptes Rendus. Math\'ematique}, pages = {1131--1134}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.004}, language = {en}, }
Nikita A. Karpenko. Incompressibility of orthogonal grassmannians. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1131-1134. doi : 10.1016/j.crma.2011.10.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.004/
[1] On motivic decompositions arising from the method of Białynicki-Birula, Invent. Math., Volume 161 (2005) no. 1, pp. 91-111
[2] Motivic decomposition of projective homogeneous varieties and the Krull–Schmidt theorem, Transform. Groups, Volume 11 (2006) no. 3, pp. 371-386
[3] The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008
[4] Essential dimension of quadrics, Invent. Math., Volume 153 (2003) no. 2, pp. 361-372
[5] N.A. Karpenko, Canonical dimension, in: Proceedings of the ICM 2010, vol. II, pp. 146–161.
[6] Incompressibility of generic orthogonal grassmannians, Linear Algebraic Groups and Related Structures (preprint server), Volume 409 (2010) (7 pp)
[7] N.A. Karpenko, Upper motives of algebraic groups and incompressibility of Severi–Brauer varieties, Linear Algebraic Groups and Related Structures (preprint server) 333 (2009) 18 pp.; J. Reine Angew. Math., in press.
[8] Cohomology of relative cellular spaces and of isotropic flag varieties, Algebra i Analiz, Volume 12 (2000) no. 1, pp. 3-69
[9] Hyperbolicity of orthogonal involutions, Doc. Math. Extra Volume: Andrei A. Suslinʼs Sixtieth Birthday (2010), pp. 371-392 (electronic). With an Appendix by Jean-Pierre Tignol
[10] Upper motives of outer algebraic groups, Quadratic Forms, Linear Algebraic Groups, and Cohomology, Dev. Math., vol. 18, Springer, New York, 2010, pp. 249-258
[11] Canonical p-dimension of algebraic groups, Adv. Math., Volume 205 (2006) no. 2, pp. 410-433
[12] The Book of Involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998 (With a preface in French by J. Tits)
[13] B.G. Mathews, Canonical dimension of projective homogeneous varieties of inner type A and type B, ProQuest LLC, PhD Thesis, University of California, Los Angeles, Ann Arbor, MI, 2009.
[14] A. Vishik, Direct summands in the motives of quadrics, preprint, 1999, 13 pp. Available on the web page of the author.
[15] Fields of u-invariant , Algebra, Arithmetic, and Geometry: In Honor of Yu.I. Manin, vol. II, Progr. Math., vol. 270, Birkhäuser Boston Inc., Boston, MA, 2009, pp. 661-685
Cited by Sources:
Comments - Policy