Inspired by the reduced basis approach and modern numerical multiscale methods, we present a new framework for an efficient treatment of heterogeneous multiscale problems. The new approach is based on the idea of considering heterogeneous multiscale problems as parametrized partial differential equations where the parameters are smooth functions. We then construct, in an offline phase, a suitable localized reduced basis that is used in an online phase to efficiently compute approximations of the multiscale problem by means of a discontinuous Galerkin method on a coarse grid. We present our approach for elliptic multiscale problems and discuss an a posteriori error estimate that can be used in the construction process of the localized reduced basis. Numerical experiments are given to demonstrate the efficiency of the new approach.
Inspiré par lʼapproche des bases réduites et les méthodes numériques modernes pour des problèmes multi-échelles, nous présentons un nouveau traitement efficace des problèmes hétérogènes multi-échelles. La nouvelle approche repose sur lʼidée de considérer des problèmes hétérogènes multi-échelles comme des équations différentielles partielles paramétrisées, où les paramètres sont des fonctions lisses. Nous construisons alors dans une phase « offline » une base réduite localisée appropriée, utilisée dans une phase « online » pour calculer efficacement des approximations du problème multi-échelle par une méthode Galerkin discontinue sur un maillage grossier. Nous présentons notre nouvelle approche pour des problèmes elliptiques multi-échelles et discutons une estimation dʼerreur à posteriori utilisée lors de la construction de la base réduite localisée. Des expériences numériques sont exposées pour démontrer la efficacité de la nouvelle approche.
Accepted:
Published online:
Sven Kaulmann 1; Mario Ohlberger 2; Bernard Haasdonk 1
@article{CRMATH_2011__349_23-24_1233_0, author = {Sven Kaulmann and Mario Ohlberger and Bernard Haasdonk}, title = {A new local reduced basis discontinuous {Galerkin} approach for heterogeneous multiscale problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1233--1238}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.10.024}, language = {en}, }
TY - JOUR AU - Sven Kaulmann AU - Mario Ohlberger AU - Bernard Haasdonk TI - A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems JO - Comptes Rendus. Mathématique PY - 2011 SP - 1233 EP - 1238 VL - 349 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2011.10.024 LA - en ID - CRMATH_2011__349_23-24_1233_0 ER -
%0 Journal Article %A Sven Kaulmann %A Mario Ohlberger %A Bernard Haasdonk %T A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems %J Comptes Rendus. Mathématique %D 2011 %P 1233-1238 %V 349 %N 23-24 %I Elsevier %R 10.1016/j.crma.2011.10.024 %G en %F CRMATH_2011__349_23-24_1233_0
Sven Kaulmann; Mario Ohlberger; Bernard Haasdonk. A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems. Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1233-1238. doi : 10.1016/j.crma.2011.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.024/
[1] Mixed multiscale finite element methods using limited global information, Multiscale Model. Simul., Volume 7 (2008) no. 2, pp. 655-676
[2] Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., Volume 39 (2002) no. 5, pp. 1749-1779
[3] A seamless reduced basis element method for 2D Maxwellʼs problem: An introduction, Spectral and High Order Methods for Partial Differential Equations, Selected Papers from the ICOSAHOMʼ09 Conference, vol. 76, 2011, pp. 141-152
[4] Principal Component Analysis, John Wiley & Sons, 2002
[5] Sven Kaulmann, A localized reduced basis approach for heterogeneous multiscale problems, Diploma thesis, University of Münster, 2011, available online: http://www.agh.ians.uni-stuttgart.de/orga/people/kaulmann.html.
[6] A reduced basis element method for the steady Stokes problem, M2AN Math. Model. Numer. Anal., Volume 40 (2006), pp. 529-552
[7] The reduced basis element method: application to a thermal fin problem, SIAM J. Sci. Comput., Volume 26 (2004) no. 1, pp. 240-258 (electronic)
[8] M. Ohlberger, Wissenschaftliches Rechnen, Lecture Notes, University of Münster, 2010.
Cited by Sources:
Comments - Policy