We show that recent work of Ni and Wilking (in preparation) [11] yields the result that a noncompact nonflat Ricci shrinker has at most quadratic scalar curvature decay. The examples of noncompact Kähler–Ricci shrinkers by Feldman, Ilmanen, and Knopf (2003) [7] exhibit that this result is sharp. We also prove a similar result for certain noncompact steady gradient Ricci solitons.
Nous montrons que les travaux récents de Ni et Wilking (in preparation) [11] donne le résultat dʼun non plate soliton contractant de type gradient non compact a tout au plus sa courbure scalaire avec décroissance quadratique. Les exemples de solitons de Kähler–Ricci contractant de type non compact par Feldman, Ilmanen, et Knopf (2003) [7] montre que ce résultat est optimales. Nous prouvons aussi un résultat similaire pour certains solitons de Ricci stable de type gradient non compact.
Accepted:
Published online:
Bennett Chow 1; Peng Lu 2; Bo Yang 1
@article{CRMATH_2011__349_23-24_1265_0, author = {Bennett Chow and Peng Lu and Bo Yang}, title = {Lower bounds for the scalar curvatures of noncompact gradient {Ricci} solitons}, journal = {Comptes Rendus. Math\'ematique}, pages = {1265--1267}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.11.004}, language = {en}, }
TY - JOUR AU - Bennett Chow AU - Peng Lu AU - Bo Yang TI - Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons JO - Comptes Rendus. Mathématique PY - 2011 SP - 1265 EP - 1267 VL - 349 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2011.11.004 LA - en ID - CRMATH_2011__349_23-24_1265_0 ER -
Bennett Chow; Peng Lu; Bo Yang. Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons. Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1265-1267. doi : 10.1016/j.crma.2011.11.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.004/
[1] Uniqueness of gradient Ricci solitons, Mathematical Research Letters, Volume 18 (2011), pp. 531-538
[2] Huai-Dong Cao, Qiang Chen, On locally conformally flat gradient steady Ricci solitons, Transactions of the American Mathematical Society, in press.
[3] On complete gradient shrinking Ricci solitons, Journal of Differential Geometry, Volume 85 (2010), pp. 175-185
[4] Strong uniqueness of the Ricci flow, Journal of Differential Geometry, Volume 82 (2009), pp. 363-382
[5] Ricci solitons: the equation point of view, Manuscripta Mathematica, Volume 127 (2008), pp. 345-367
[6] Complete gradient shrinking Ricci solitons have finite topological type, Comptes Rendus Mathematique Academie des Sciences Paris, Volume 346 (2008), pp. 653-656
[7] Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, Journal of Differential Geometry, Volume 65 (2003), pp. 169-209
[8] Area growth rate of the level surface of the potential function on the 3-dimensional steady Ricci soliton, Proceedings of the American Mathematical Society, Volume 137 (2009), pp. 2093-2097
[9] The formation of singularities in the Ricci flow, Surveys in Differential Geometry, vol. II, International Press, Cambridge, MA, 1995, pp. 7-136
[10] A compactness theorem for complete Ricci shrinkers, Geometric and Functional Analysis, Volume 21 (2011) no. 5, pp. 1091-1116
[11] Lei Ni, Burkhard Wilking, in preparation.
[12] Ovidiu Munteanu, Natasa Sesum, On gradient Ricci solitons, , Journal of Geometric Analysis, in press. | arXiv
[13] Remarks on non-compact gradient Ricci solitons, Mathematische Zeitschrift, Volume 268 (2011) no. 3–4, pp. 777-790 | DOI
[14] Remarks on gradient steady Ricci solitons | arXiv
[15] On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below, Acta Mathematica Sinica, Volume 27 (2011) no. 5, pp. 871-882
Cited by Sources:
Comments - Policy