[Le crochet de Goldman caractérise les homéomorphismes]
Nous montrons quʼune équivalence dʼhomotopie entre des surfaces compactes, connexes, orientées et de bord non vide, est homotope à un homéomorphisme si et seulement si elle commute avec le crochet de Goldman.
We show that a homotopy equivalence between compact, connected, oriented surfaces with non-empty boundary is homotopic to a homeomorphism if and only if it commutes with the Goldman bracket.
Accepté le :
Publié le :
Siddhartha Gadgil 1
@article{CRMATH_2011__349_23-24_1269_0, author = {Siddhartha Gadgil}, title = {The {Goldman} bracket characterizes homeomorphisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {1269--1272}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.11.005}, language = {en}, }
Siddhartha Gadgil. The Goldman bracket characterizes homeomorphisms. Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1269-1272. doi : 10.1016/j.crma.2011.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.005/
[1] Floer homology of cotangent bundles and the loop product, Geom. Topol., Volume 14 (2010), pp. 1569-1722
[2] Combinatorial Lie bialgebras of curves on surfaces, Topology, Volume 43 (2004), pp. 543-568
[3] M. Chas, D. Sullivan, String topology, Annals of Mathematics, in press, . | arXiv
[4] Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., Volume 85 (1986) no. 2, pp. 263-302
[5] On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2), Volume 87 (1968), pp. 56-88
Cité par Sources :
Commentaires - Politique