É. Ghys a suggéré que lʼenlacement entre relevés de collections géodésiques homologiquement nulles sur le fibré unitaire tangent à toute orbifold orientable de dimension 2 est négatif ou nul. On annonce et esquisse ici des démonstrations dans les cas du tore plat, des orbifolds de type
A conjecture of Ghys asserts that the lifts of two homologically zero collections of geodesics on an orientable 2-orbifold are always negatively linked. We sketch proofs in the cases of the flat torus, of orbifolds of type
Accepté le :
Publié le :
Pierre Dehornoy 1
@article{CRMATH_2012__350_1-2_77_0, author = {Pierre Dehornoy}, title = {Enlacement entre g\'eod\'esiques sur une orbifold}, journal = {Comptes Rendus. Math\'ematique}, pages = {77--80}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.11.015}, language = {fr}, }
Pierre Dehornoy. Enlacement entre géodésiques sur une orbifold. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 77-80. doi : 10.1016/j.crma.2011.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.015/
[1] Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc., Volume 18 (1917), pp. 199-300
[2] Pi. Dehornoy, Invariants topologiques des orbites périodiques dʼun champ de vecteurs, Thèse, ÉNS Lyon, 2011.
[3] The geometry of cross sections to flows, Topology, Volume 21 (1982), pp. 353-371
[4] Transitive Anosov flows and pseudo-Anosov maps, Topology, Volume 22 (1983), pp. 299-303
[5] Knots and dynamics, Proc. of the Int. Cong. of Mathematicians, vol. I, Eur. Math. Soc., Zürich, 2007, pp. 247-277
[6] Right-handed vector fields & the Lorenz attractor, Japan J. Math., Volume 4 (2009), pp. 47-61
[7] Classical Tesselations and Three-Manifolds, Universitext, 1987 (230 pp)
[8] T. Pinski, Templates for geodesic flows, PhD thesis, Technion, Haifa, 2011.
[9] The Topology and Geometry of Three-Manifolds, 1980
[10] J. Van Horn Morris, Constructions of open book decompositions, PhD thesis, University of Texas, Austin, 2007.
- Modular cocycles and linking numbers, Duke Mathematical Journal, Volume 166 (2017) no. 6 | DOI:10.1215/00127094-3793032
Cité par 1 document. Sources : Crossref
Commentaires - Politique