A conjecture of Ghys asserts that the lifts of two homologically zero collections of geodesics on an orientable 2-orbifold are always negatively linked. We sketch proofs in the cases of the flat torus, of orbifolds of type , and of the orbifold of type . We deduce that the lift of any homologically zero collection of geodesics bounds a cross section to the geodesic flow, and is the binding of an open book decomposition.
É. Ghys a suggéré que lʼenlacement entre relevés de collections géodésiques homologiquement nulles sur le fibré unitaire tangent à toute orbifold orientable de dimension 2 est négatif ou nul. On annonce et esquisse ici des démonstrations dans les cas du tore plat, des orbifolds de type et de lʼorbifold de type . On obtient comme corollaire que toute collection homologiquement nulle de géodésiques sur ces orbifolds se relève en un entrelacs bordant une section de Birkhoff du flot géodésique, et donc en un entrelacs fibré.
Accepted:
Published online:
Pierre Dehornoy 1
@article{CRMATH_2012__350_1-2_77_0, author = {Pierre Dehornoy}, title = {Enlacement entre g\'eod\'esiques sur une orbifold}, journal = {Comptes Rendus. Math\'ematique}, pages = {77--80}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.11.015}, language = {fr}, }
Pierre Dehornoy. Enlacement entre géodésiques sur une orbifold. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 77-80. doi : 10.1016/j.crma.2011.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.015/
[1] Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc., Volume 18 (1917), pp. 199-300
[2] Pi. Dehornoy, Invariants topologiques des orbites périodiques dʼun champ de vecteurs, Thèse, ÉNS Lyon, 2011.
[3] The geometry of cross sections to flows, Topology, Volume 21 (1982), pp. 353-371
[4] Transitive Anosov flows and pseudo-Anosov maps, Topology, Volume 22 (1983), pp. 299-303
[5] Knots and dynamics, Proc. of the Int. Cong. of Mathematicians, vol. I, Eur. Math. Soc., Zürich, 2007, pp. 247-277
[6] Right-handed vector fields & the Lorenz attractor, Japan J. Math., Volume 4 (2009), pp. 47-61
[7] Classical Tesselations and Three-Manifolds, Universitext, 1987 (230 pp)
[8] T. Pinski, Templates for geodesic flows, PhD thesis, Technion, Haifa, 2011.
[9] The Topology and Geometry of Three-Manifolds, 1980
[10] J. Van Horn Morris, Constructions of open book decompositions, PhD thesis, University of Texas, Austin, 2007.
Cited by Sources:
Comments - Policy