Comptes Rendus
Topologie/Systèmes dynamiques
Enlacement entre géodésiques sur une orbifold
[Linking between geodesics on an orbifold]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 77-80.

A conjecture of Ghys asserts that the lifts of two homologically zero collections of geodesics on an orientable 2-orbifold are always negatively linked. We sketch proofs in the cases of the flat torus, of orbifolds of type (2,q,), and of the orbifold of type (2,3,7). We deduce that the lift of any homologically zero collection of geodesics bounds a cross section to the geodesic flow, and is the binding of an open book decomposition.

É. Ghys a suggéré que lʼenlacement entre relevés de collections géodésiques homologiquement nulles sur le fibré unitaire tangent à toute orbifold orientable de dimension 2 est négatif ou nul. On annonce et esquisse ici des démonstrations dans les cas du tore plat, des orbifolds de type (2,q,) et de lʼorbifold de type (2,3,7). On obtient comme corollaire que toute collection homologiquement nulle de géodésiques sur ces orbifolds se relève en un entrelacs bordant une section de Birkhoff du flot géodésique, et donc en un entrelacs fibré.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.11.015

Pierre Dehornoy 1

1 UMPA, Ens de Lyon, 46, allée dʼItalie, 69364 Lyon, France
@article{CRMATH_2012__350_1-2_77_0,
     author = {Pierre Dehornoy},
     title = {Enlacement entre g\'eod\'esiques sur une orbifold},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {77--80},
     publisher = {Elsevier},
     volume = {350},
     number = {1-2},
     year = {2012},
     doi = {10.1016/j.crma.2011.11.015},
     language = {fr},
}
TY  - JOUR
AU  - Pierre Dehornoy
TI  - Enlacement entre géodésiques sur une orbifold
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 77
EP  - 80
VL  - 350
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2011.11.015
LA  - fr
ID  - CRMATH_2012__350_1-2_77_0
ER  - 
%0 Journal Article
%A Pierre Dehornoy
%T Enlacement entre géodésiques sur une orbifold
%J Comptes Rendus. Mathématique
%D 2012
%P 77-80
%V 350
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2011.11.015
%G fr
%F CRMATH_2012__350_1-2_77_0
Pierre Dehornoy. Enlacement entre géodésiques sur une orbifold. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 77-80. doi : 10.1016/j.crma.2011.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.015/

[1] G. Birkhoff Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc., Volume 18 (1917), pp. 199-300

[2] Pi. Dehornoy, Invariants topologiques des orbites périodiques dʼun champ de vecteurs, Thèse, ÉNS Lyon, 2011.

[3] D. Fried The geometry of cross sections to flows, Topology, Volume 21 (1982), pp. 353-371

[4] D. Fried Transitive Anosov flows and pseudo-Anosov maps, Topology, Volume 22 (1983), pp. 299-303

[5] É. Ghys Knots and dynamics, Proc. of the Int. Cong. of Mathematicians, vol. I, Eur. Math. Soc., Zürich, 2007, pp. 247-277

[6] É. Ghys Right-handed vector fields & the Lorenz attractor, Japan J. Math., Volume 4 (2009), pp. 47-61

[7] J.M. Montesinos Classical Tesselations and Three-Manifolds, Universitext, 1987 (230 pp)

[8] T. Pinski, Templates for geodesic flows, PhD thesis, Technion, Haifa, 2011.

[9] W. Thurston The Topology and Geometry of Three-Manifolds, 1980

[10] J. Van Horn Morris, Constructions of open book decompositions, PhD thesis, University of Texas, Austin, 2007.

Cited by Sources:

Comments - Policy