We assess the probability of resonances between sufficiently distant states and in the configuration space of an N-particle disordered quantum system on the lattice , . This includes the cases where the transition “shuffles” the particles in x, like the transition in a 3-particle system. In presence of a random external potential such pairs of configurations give rise to strongly coupled random local Hamiltonians, so that eigenvalue concentration bounds are difficult to obtain (cf. Aizenman and Warzel (2009) [2]; Chulaevsky and Suhov (2009) [8]). This results in eigenfunction decay bounds weaker than expected. We show that more optimal bounds obtained so far only for 2-particle systems (Chulaevsky and Suhov (2008) [6]) can be extended to any .
On établit une estimation de la probabilité de résonance entre deux états quantiques et dans , , pour un système de particules quantiques en milieu désordonné. Cette estimation généralise lʼanalogue de lʼestimation de Wegner pour N particules, analogue démontrée précédemment dans (Chulaevsky et Suhov (2008, 2009) [6,7]). Ce résultat permet dʼobtenir des estimations optimales de décroissance de fonctions propres pour les systèmes de particules dans les milieux désordonnés, déjà démontrées dans (Chulaevsky et Suhov (2008) [6]) pour .
Accepted:
Published online:
Victor Chulaevsky 1
@article{CRMATH_2012__350_1-2_81_0, author = {Victor Chulaevsky}, title = {On resonances in disordered multi-particle systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {81--85}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.12.003}, language = {en}, }
Victor Chulaevsky. On resonances in disordered multi-particle systems. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 81-85. doi : 10.1016/j.crma.2011.12.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.12.003/
[1] Localization at large disorder and at extreme energies: an elementary derivation, Comm. Math. Phys., Volume 157 (1993), pp. 245-278
[2] Localization bounds for multi-particle systems, Comm. Math. Phys., Volume 290 (2009), pp. 903-934
[3] Absence of diffusion in certain random lattices, Phys. Rev., Volume 109 (1958), pp. 1492-1505
[4] Wegner-type bounds for a multi-particle continuous Anderson model with an alloy-type external potential, J. Stat. Phys., Volume 138 (2010), pp. 553-566
[5] Anderson localisation for an interacting two-particle quantum system on , 2007 | arXiv
[6] Wegner bounds for a two-particle tight binding model, Comm. Math. Phys., Volume 283 (2008), pp. 479-489
[7] Eigenfunctions in a two-particle Anderson tight binding model, Comm. Math. Phys., Volume 289 (2009), pp. 701-723
[8] Multi-particle Anderson localisation: induction on the number of particles, Math. Phys. Anal. Geom., Volume 12 (2009), pp. 117-139
[9] A new proof of localization in the Anderson tight binding model, Comm. Math. Phys., Volume 124 (1989), pp. 285-299
[10] Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Comm. Math. Phys., Volume 88 (1983), pp. 151-184
[11] Constructive proof of localization in the Anderson tight binding model, Comm. Math. Phys., Volume 101 (1985), pp. 21-46
[12] M. Gaume, An extension of the multi-particle Wegner-type bound for weakly decoupled Hamiltonians, preprint, Univ. Paris 7, in preparation.
[13] A pure point spectrum of the one-dimensional Schrödinger operator, Funct. Anal. Appl., Volume 11 (1977), pp. 1-10
[14] A Wegner estimate for multi-particle random Hamiltonians, Zh. Mat. Fiz. Anal. Geom., Volume 4 (2008), pp. 121-127
[15] Sur le spectre des opérateurs aux différences finies aléatoires, Comm. Math. Phys., Volume 78 (1980), pp. 201-246
[16] Caught by Disorder, Birkhäuser Inc., Boston, MA, 2001
[17] Bounds on the density of states in disordered systems, Z. Phys. B: Condensed Matter, Volume 44 (1981), pp. 9-15
Cited by Sources:
Comments - Policy