For a smooth strictly plurisubharmonic function u on an open set and F a nondecreasing function on , we investigate the complex partial differential equations
Pour une fonction u strictement plurisouharmonique de classe sur un ouvert Ω de et F une fonction de classe croissante sur , on considère lʼéquation aux dérivées partielles complexes
Accepted:
Published online:
Saïd Asserda 1
@article{CRMATH_2012__350_1-2_41_0, author = {Sa{\"\i}d Asserda}, title = {A {Note} on the {Bernstein} property of a fourth order complex partial differential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {41--44}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.11.016}, language = {en}, }
Saïd Asserda. A Note on the Bernstein property of a fourth order complex partial differential equations. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 41-44. doi : 10.1016/j.crma.2011.11.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.016/
[1] A Bernstein property of a class of fourth order complex partial differential equations, Results Math., Volume 58 (2010), pp. 81-92
[2] Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Math., vol. 699, 1979
Cited by Sources:
Comments - Policy