[Existence des solutions faibles pour un système stationaire simplifié de turbulence]
We consider a coupled system of PDEs for two scalar functions u and k in a bounded domain
On considère un système couplé dʼéquations aux dérivées partielles pour des fonctions scalaires u et k dans un domaine borné de
Accepté le :
Publié le :
Joachim Naumann 1 ; Joerg Wolf 2
@article{CRMATH_2012__350_1-2_45_0, author = {Joachim Naumann and Joerg Wolf}, title = {Existence of weak solutions to a simplified steady system of turbulence modeling}, journal = {Comptes Rendus. Math\'ematique}, pages = {45--50}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.12.008}, language = {en}, }
TY - JOUR AU - Joachim Naumann AU - Joerg Wolf TI - Existence of weak solutions to a simplified steady system of turbulence modeling JO - Comptes Rendus. Mathématique PY - 2012 SP - 45 EP - 50 VL - 350 IS - 1-2 PB - Elsevier DO - 10.1016/j.crma.2011.12.008 LA - en ID - CRMATH_2012__350_1-2_45_0 ER -
Joachim Naumann; Joerg Wolf. Existence of weak solutions to a simplified steady system of turbulence modeling. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 45-50. doi : 10.1016/j.crma.2011.12.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.12.008/
[1] Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients, Math. Model. Numer. Anal., Volume 31 (1977), pp. 845-870
[2] On the existence of weak solutions to a stationary one-equation RANS model with unbounded eddy viscosities, Ann. Univ. Ferrara, Volume 55 (2009), pp. 67-87
[3] On a turbulent system with unbounded viscosities, Nonlinear Anal., Volume 52 (2003), pp. 1051-1068
[4] Konvektiver Impuls-, Wärme- und Stoffaustausch, Vieweg-Verlag, Braunschweig/Wiesbaden, 1982
[5] A RANS 3D model with unbounded eddy viscosities, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 24 (2007), pp. 413-441
[6] Existence of weak solutions to the equations of stationary motion of heat-conducting incompressible viscous fluids, Progress in Nonlinear Differential Equations and Their Applications, vol. 64, Birkhäuser-Verlag, 2005, pp. 373-390
[7] Turbulent Flows, Cambridge Univ. Press, Cambridge, 2006
[8] Über ein neues Formelsystem für die ausgebildete Turbulenz, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. (1945), pp. 6-19
[9] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), Volume 15 (1965), pp. 189-258
[10] Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990
- On the existence of weak solutions to a model problem for the unsteady turbulent pipe-flow, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 351 (2013) no. 11-12, pp. 451-456 | DOI:10.1016/j.crma.2013.06.011 | Zbl:1283.35092
Cité par 1 document. Sources : zbMATH
Commentaires - Politique