Let be a complex simple Lie algebra, and be a Cartan subalgebra. In the end of 1990s, B. Kostant defined two filtrations on , one using the Clifford algebras and the odd analogue of the Harish-Chandra projection , and the other one using the canonical isomorphism (here is the Cartan subalgebra in the simple Lie algebra corresponding to the dual root system) and the adjoint action of the principal -triple. Kostant conjectured that the two filtrations coincide.
Recently, A. Joseph proved that the second Kostant filtration coincides with the filtration on induced by the generalized Harish-Chandra projection and the evaluation at . In this Note, we prove that Josephʼs result is equivalent to the Kostant Conjecture. We also show that the standard Harish-Chandra projection composed with evaluation at ρ induces the same filtration on .
Soient une algèbre de Lie simple complexe, et une sous-algèbre de Cartan. Vers la fin des années 1990, B. Kostant définit deux filtrations sur ; la première utilise les algèbres de Clifford et lʼanalogue impair de la projection de Harish-Chandra , la seconde lʼisomorphisme canonique (ici, est la sous-algèbre de Cartan dans lʼalgèbre de Lie simple correspondant au système de racines dual) et lʼaction adjointe du -triplet principal. Kostant conjectura que ces deux filtrations coïncident.
Récemment, A. Joseph a démontré que la seconde filtration de Kostant coïncidait avec la filtration sur induite par la projection de Harish-Chandra généralisée et lʼévaluation au point . Dans cette Note, nous montrons que le résultat de Joseph est équivalent à la conjecture de Kostant. Nous obtenons de plus que la projection de Harish-Chandra standard composée avec lʼévaluation au point ρ induit la même filtration sur .
Accepted:
Published online:
Anton Alekseev 1; Anne Moreau 2
@article{CRMATH_2012__350_1-2_13_0, author = {Anton Alekseev and Anne Moreau}, title = {On the {Kostant} conjecture for {Clifford} algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {13--18}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.11.018}, language = {en}, }
Anton Alekseev; Anne Moreau. On the Kostant conjecture for Clifford algebras. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 13-18. doi : 10.1016/j.crma.2011.11.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.018/
[1] The non-commutative Weil algebra, Invent. Math., Volume 139 (2000) no. 1, pp. 135-172
[2] Group-valued equivariant localization, Invent. Math., Volume 140 (2000) no. 2, pp. 327-350
[3] One-dimensional Chern–Simons theory, Comm. Math. Phys., Volume 307 (2011), pp. 185-227
[4] Y. Bazlov, Exterior powers of the adjoint representation of a simple Lie algebra, PhD thesis, Weizmann Institute, 2003.
[5] Y. Bazlov, The Harish-Chandra isomorphism for Clifford algebras, preprint, . | arXiv
[6] A. Joseph, Zhelobenko invariants, Bernstein–Gelfand–Gelfand operators and the analogue Kostant Clifford algebra conjecture, preprint, . | arXiv
[7] A. Joseph, Analogue Zhelobenko invariants for the Kostant and Hitchin Clifford algebra conjectures, preprint, . | arXiv
[8] A generalized Harish-Chandra isomorphism, Adv. Math., Volume 226 (2011), pp. 1168-1180
[9] Mickelsson algebras and Zhelobenko operators, J. Algebra, Volume 319 (2008), pp. 2113-2165
[10] The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., Volume 81 (1959), pp. 973-1032
[11] Clifford algebra analogue of the Hopf–Koszul–Samelson Theorem, the ρ-decomposition on , and the -module structure on , Adv. Math., Volume 125 (1997), pp. 275-350
[12] Dirac cohomology for the cubic Dirac operator, Chevaleret/Rehovot, 2000 (Progr. Math.), Volume vol. 210, Birkhäuser, Boston (2003), pp. 69-93
[13] Principal basis in Cartan subalgebra, J. Lie Theory, Volume 20 (2010) no. 4, pp. 673-687
Cited by Sources:
Comments - Policy