In this Note, we prove that all the components of a d-symmetric classical d-orthogonal are classical and in the case where the sequence is m-symmetric and d-orthogonal, we prove that the first component of an m-symmetric classical d-orthogonal is classical. That generalized the Douak and Maroni (1992) [8] results for the case . Then we discuss, as far as we know, a new symmetric classical 3-PS.
Dans cette Note, on montre que les composantes dʼune suite d-symétrique d-orthogonale et classique sont aussi classiques. Dans le cas où la suite est d-orthogonale classique et m-symétrique, on montre que la première composante est d-orthogonale classique. On généralise ainsi les résultats de Douak et Maroni (1992) [8]. On donne à la fin de cette note un exemple dʼune nouvelle suite 3-orthogonale symétrique classique.
Accepted:
Published online:
Mongi Blel 1
@article{CRMATH_2012__350_1-2_19_0, author = {Mongi Blel}, title = {On \protect\emph{m}-symmetric \protect\emph{d}-orthogonal polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {19--22}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.12.011}, language = {en}, }
Mongi Blel. On m-symmetric d-orthogonal polynomials. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 19-22. doi : 10.1016/j.crma.2011.12.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.12.011/
[1] On some -symmetric linear functionals, J. Comput. Appl. Math., Volume 133 (2001), pp. 207-218
[2] On the classical d-orthogonal polynomials defined by certain generating function, II, Bull. Belg. Math. Soc., Volume 8 (2001), pp. 591-605
[3] A generalized hypergeometric d-orthogonal polynomial set, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2000) no. 5, pp. 349-354
[4] On d-symmetric classical d-orthogonal polynomials, J. Comput. Appl. Math., Volume 236 (2011), pp. 85-93
[5] A characterization of Dunkl-classical d-symmetric d-orthogonal polynomials and its applications, J. Comput. Appl. Math., Volume 236 (2011), pp. 49-64
[6] The relationship of the Hermite to the Laguerre polynomials, Boll. Unione Mat. Ital., Volume 16 (1961) no. 3, pp. 386-390
[7] An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, London, Paris, 1978
[8] Les polynômes orthogonaux « classiques » de dimension deux, Analysis, Volume 12 (1992), pp. 71-107
[9] Lʼorthogonalité et les récurrences de polynômes dʼordre supérieur à deux, Ann. Fac. Sci. Toulouse, Volume 10 (1989) no. 1, pp. 105-139
[10] Orthogonal polynomials on the unit circle: Symmetrization and quadratic decomposition, J. Approx. Theory, Volume 65 (1991) no. 1, pp. 109-119
[11] A class of orthogonal polynomials on the radial rays in the complex plane, J. Math. Anal. Appl., Volume 206 (1997), pp. 121-139
[12] Symmetric orthonormal systems on the unit circle, Atti. Semin. Mat. Fis. Univ. Modena, Volume XL (1992), pp. 667-687
[13] A Treatise on Generating Functions, John Wiley & Sons, New York, Toronto, 1984
[14] Vector orthogonal relations. Vector QD-algorithm, J. Comput. Appl. Math., Volume 19 (1987), pp. 141-150
Cited by Sources:
Comments - Policy