Comptes Rendus
Mathematical Analysis
On m-symmetric d-orthogonal polynomials
Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 19-22.

In this Note, we prove that all the components of a d-symmetric classical d-orthogonal are classical and in the case where the sequence is m-symmetric and d-orthogonal, we prove that the first component of an m-symmetric classical d-orthogonal is classical. That generalized the Douak and Maroni (1992) [8] results for the case m=d. Then we discuss, as far as we know, a new symmetric classical 3-PS.

Dans cette Note, on montre que les composantes dʼune suite d-symétrique d-orthogonale et classique sont aussi classiques. Dans le cas où la suite est d-orthogonale classique et m-symétrique, on montre que la première composante est d-orthogonale classique. On généralise ainsi les résultats de Douak et Maroni (1992) [8]. On donne à la fin de cette note un exemple dʼune nouvelle suite 3-orthogonale symétrique classique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.12.011

Mongi Blel 1

1 Department of Mathematics College of Science, King Saud University, Riyadh 11451, BP 2455, Saudi Arabia
@article{CRMATH_2012__350_1-2_19_0,
     author = {Mongi Blel},
     title = {On \protect\emph{m}-symmetric \protect\emph{d}-orthogonal polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {19--22},
     publisher = {Elsevier},
     volume = {350},
     number = {1-2},
     year = {2012},
     doi = {10.1016/j.crma.2011.12.011},
     language = {en},
}
TY  - JOUR
AU  - Mongi Blel
TI  - On m-symmetric d-orthogonal polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 19
EP  - 22
VL  - 350
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2011.12.011
LA  - en
ID  - CRMATH_2012__350_1-2_19_0
ER  - 
%0 Journal Article
%A Mongi Blel
%T On m-symmetric d-orthogonal polynomials
%J Comptes Rendus. Mathématique
%D 2012
%P 19-22
%V 350
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2011.12.011
%G en
%F CRMATH_2012__350_1-2_19_0
Mongi Blel. On m-symmetric d-orthogonal polynomials. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 19-22. doi : 10.1016/j.crma.2011.12.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.12.011/

[1] Y. Ben Cheikh On some (n1)-symmetric linear functionals, J. Comput. Appl. Math., Volume 133 (2001), pp. 207-218

[2] Y. Ben Cheikh; K. Douak On the classical d-orthogonal polynomials defined by certain generating function, II, Bull. Belg. Math. Soc., Volume 8 (2001), pp. 591-605

[3] Y. Ben Cheikh; K. Douak A generalized hypergeometric d-orthogonal polynomial set, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2000) no. 5, pp. 349-354

[4] Y. Ben Cheikh; N. Ben Romdhane On d-symmetric classical d-orthogonal polynomials, J. Comput. Appl. Math., Volume 236 (2011), pp. 85-93

[5] Y. Ben Cheikh; M. Gaied A characterization of Dunkl-classical d-symmetric d-orthogonal polynomials and its applications, J. Comput. Appl. Math., Volume 236 (2011), pp. 49-64

[6] L. Carlitz The relationship of the Hermite to the Laguerre polynomials, Boll. Unione Mat. Ital., Volume 16 (1961) no. 3, pp. 386-390

[7] T.S. Chihara An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, London, Paris, 1978

[8] K. Douak; P. Maroni Les polynômes orthogonaux « classiques » de dimension deux, Analysis, Volume 12 (1992), pp. 71-107

[9] P. Maroni Lʼorthogonalité et les récurrences de polynômes dʼordre supérieur à deux, Ann. Fac. Sci. Toulouse, Volume 10 (1989) no. 1, pp. 105-139

[10] F. Marcellàn; G. Sansigre Orthogonal polynomials on the unit circle: Symmetrization and quadratic decomposition, J. Approx. Theory, Volume 65 (1991) no. 1, pp. 109-119

[11] G.V. Milovanovič A class of orthogonal polynomials on the radial rays in the complex plane, J. Math. Anal. Appl., Volume 206 (1997), pp. 121-139

[12] P.E. Ricci Symmetric orthonormal systems on the unit circle, Atti. Semin. Mat. Fis. Univ. Modena, Volume XL (1992), pp. 667-687

[13] H.M. Srivastava; H.L. Manocha A Treatise on Generating Functions, John Wiley & Sons, New York, Toronto, 1984

[14] J. Van Iseghem Vector orthogonal relations. Vector QD-algorithm, J. Comput. Appl. Math., Volume 19 (1987), pp. 141-150

Cited by Sources:

Comments - Policy