[Random walks on directed lattices and Martin boundary]
In this Note, we are considering simple random walks on partially directed lattices and studying their Martin boundary. Usual technics involving transitive group actions for which the Markov operator is invariant are useless because such a group does not exist in this context. Thus, the description of the Martin boundary is obtained from precise estimates of the Green functions.
Dans cette Note, on étudie la frontière de Martin dʼune marche aléatoire sur un certain type de di-graphe. Les techniques usuelles basées sur des actions de groupe transitives laissant invariant lʼopérateur de Markov ne peuvent être appliquées car de tels groupes nʼexistent pas dans le cadre de di-graphes non triviaux. Ainsi, lʼétude de la frontière de Martin repose sur des techniques ad hoc consistant à obtenir des estimées précises de la fonction de Green.
Accepted:
Published online:
Basile de Loynes 1
@article{CRMATH_2012__350_1-2_87_0, author = {Basile de Loynes}, title = {Marche al\'eatoire sur un di-graphe et fronti\`ere de {Martin}}, journal = {Comptes Rendus. Math\'ematique}, pages = {87--90}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.12.005}, language = {fr}, }
Basile de Loynes. Marche aléatoire sur un di-graphe et frontière de Martin. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 87-90. doi : 10.1016/j.crma.2011.12.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.12.005/
[1] Random walks on randomly oriented lattices, Markov Process. Related Fields, Volume 9 (2003), pp. 394-412
[2] Sur lʼéquation de convolution , C. R. Acad. Sci. Paris, Volume 250 (1960), pp. 799-801
[3] Transient random walks on 2D-oriented lattices, Teor. Veroyatn. Primen., Volume 52 (2007), pp. 815-826
[4] V. Kaimanovich, Measure-theoretic boundaries of Markov chains, 0–2 laws and entropy, in: M.A. Picardello (Ed.), Proceedings of the Conference on Harmonic Analysis and Discrete Potential Theory, 1992, pp. 145–180.
[5] Is transport in porous media always diffusive? A counter-example, Water Resour. Res., Volume 16 (1980), pp. 901-917
[6] Transient random walk in with stationary orientations, ESAIM Probab. Stat., Volume 13 (2009), pp. 417-436
[7] Principles of Random Walk, Springer-Verlag, 2001
[8] Denumerable Markov Chains, EMS Textbooks in Mathematics, 2009
Cited by Sources:
Comments - Policy